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I' " 

PREFACE 

The p r inc ipa l  aim of t h i s  monograph is to   p resent  a coherent and f a i r l y  
comprehensive  account  of  recent  progress i n   t h e  area of  dynamics and s t a b i l i t y  
of  mechanical  systems  with  follower  forces. By "recent ,"   qui te   specif ical ly ,  
is meant the   per iod   a f te r  1963, th t   year   o f   publ ica t ion  of the  English  trans- 
l a t i o n  of t h e   f i r s t  book (by V. V. Bolotin)  devoted  in i t s  e n t i r e t y   t o  non- 
conservative  problems of the  theory  of elastic s t a b i l i t y ,  i . e . ,  problems with 
follower  forces. 

The last decade  has  witnessed a considerable   expansion  of   interest   in  
t h i s  problem area, but  the  progress  has  been  reported  piecemeal by a v a r i e t y  
of i n v e s t i g a t o r s   i n   d i f f e r e n t   c o u n t r i e s  and s c a t t e r e d   i n  numerous journals.  
Even though  advances are being  continually made, i t  s t i l l  appears  to be 
ju s t i f i ed   t o   a t t empt  t o  present  an  account  of  recent  developments and t o  
place them i n t o  a re la t ive   perspec t ive .  In this   a t tempt ,   the   author 's  own 
work and t h a t  of h i s   co l labora tors   has   rece ived ,   qu i te   na tura l ly ,   par t icu lar  
emphasis. 

It i s  hoped tha t   t he  monograph may prove  useful  as a source  of  information 
on the   cur ren t   s ta te -of - the-ar t   for   the   research  worker and practicing  engineer.  
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CHAPTER I 

INTRODUCTION 

1.1 Structural  Stability:  Column  Buckling 

The  structural  engineer and the  applied  mechanician  are  usually  becoming 
acquainted  with  the  area  of  structural  stability  through  Euler's  problem  of 
elastic  column  buckling. 

There  are  several  different  ways  in  which  the  problem  of  column  buckling 
can  be  presented t o  the  beginner,  but  one of the  most  instructive  ones  is 
through an eccentrically  loaded  cantilevered  column  (Fig.  1.1)  as  was  done 
recently  by  Ziegler [1].* 

It is assumed  that  the  column  is  homogeneous,  obeys  linear  elastic  Hooke's 
law  (Young's  modulus E) and  is  of  constant  cross-section.  Let 4 be  the  length 
of the  column,  E1  the  flexural  rigidity,  e  the  eccentricity of the  (compres- 
sive)  load  P  and  f  the  deflection  at  the  free  end.  The  load  P  is  assumed t o  
be  of  the  "dead"  type,  i.e.,  a  weight  which  does  not  change  in  magnitude  and 
direction  as  a  possible  consequence of the  deformation of the  column.  If  the 
slope  of  the  deflected  column  axis w(x) is  assumed  to  be  small  as  compared  to 
unity,  the  bending  moment  at  section  x  is 

On the  other  hand  in  elementary  theory  of  beam  bending  the  bending  moment M 
is  known  to  be  proportional  to  the  curvature, i.e., 

Elimination  of M in the  above two relations  leads to the  differential  equation 
of  the  deflection  curve 

or 

W'' + - w = - (e + f) 
P  P 
E1  E1 

~" ~ _ _ _ _ ~  * ~- ~ ~~ 

Numbers  in  brackets  indicate  references  compiled  in  a  listing  beginning 
on  page 143. 



The genera l   so lu t ion  of t h i s   equa t ion   can   be   wr i t t en   i n   t he  form, wi th   the  

abbreviation  P/(EI) = x 2 

w = A c o s n x + B s i n n x + e + f  (1.5) 

The unknown constants  A, B and f are t o  be determined  from  the  boundary  con- 
d i t i o n s  

w(0) = w'(0) = 0 and w(4) = f (1.6) 

which leads  to   the  solut ion 

w =- 
COS Kk 

e (1- cos H x )  

and the end de f l ec t ion  

1 
f = e ( c o s H R  - 9 

It is  seen  from this l a s t   exp res s ion   t ha t   i f  

the   def lec t ions  a t  the   f r ee  end f become in f in i t e ,   r ega rd le s s  how small the  
eccen t r i c i ty  e. The column is said  to  buckle  under  the  cri t ical   load 
(buckling  load) 

IT E 1  2 
P1 = - 

4R2 
(1.10) 

Due to  the  assumptions  introduced,  the  above  relations are obviously 
valid  only  €or small de f l ec t ions .   I f  a c e n t r a l l y  loaded column i s  considered 
and i f   t he   ana lys i s  is  based  on a  more exac t   (nonl inear )   d i f fe ren t ia l  equa- 
t i on  of the  deflection  curve,  which  allows  for  large  slopes of this curve, 
the dependence  of P on the  end de f l ec t ion  f can  be  established,  with  the re- 
s u l t  i l l u s t r a t e d   i n   F i g .  1.2. 

In   t he   r ange  of the  load 0 < P < P1 there  is  only one equilibrium  posi-  

t ion  possible ,  namely, t h a t  of t he   s t r a igh t  column (f = 0). This  equilibrium 
pos i t ion  i s  s tab le   in   the   sense   tha t   smal l   d i s turbances   o r   imperfec t ions  of 
va r ious   so r t s  are not  followed by la rge   devia t ions  from t h i s   p o s i t i o n .   I n  
the  range P >P1, by con t r a s t ,   t he   pe r f ec t ly   s t r a igh t  column (f = 0) i s  s t i l l  

2 



i n  equi l ibr ium,  but   this   equi l ibr ium is  unstable  since  small   disturbances w i l l  
cause  the column t o  move away from t h i s   p o s i t i o n   ( f  # 0 ) .  The s t ab le   equ i l ib -  
rium p o s i t i o n s   i n   t h i s   r a n g e ,  P  >P1, are located on a symmetric curve  which 

branches  from  the  straight  l ine f = 0 a t  the  point  P = P1. 

It is  thus  seen  that   buckling  of a column is associated  with  the pheno- 
menon of   bifurcat ion of equi l ibr ium  paths ,  a concept  intimately  associated 
wi th   Euler ' s   no t ion  of s t a b i l i t y  and i n s t a b i l i t y .  

T h i s  concept  of  Euler  in  analyzing  stabil i ty  served  technology w e l l ,  par-  
t i cu l a r ly   i n   t he   a r ea   o f   s t ruc tu ra l   eng inee r ing  and s t r u c t u r a l  mechanics, as 
applied  to  buckling of beams, frames,  plates, etc., and various  combinations 
of structural   elements,   subjected  to  dead  loads.  

It was found,  however, t h a t  this concept  cannot  be  applied  indiscrimi- 
n a t e l y   t o   t h e   s t a b i l i t y  problem  of  any  mechanical  system.  Specifically, 
systems  which  are  not  subjected  to  dead  loads  but  rather  to  forces  due  to  an 
in t e rac t ing  medium have o f t e n  t o  be  analyzed d i f fe ren t ly   wi th   regard   to  sta- 
b i l i t y .  Exaaples of  such  mechanical  systems  include  airfoils  placed  in  an 
airstream,  turbine  blades  interacting  with  water,   f lexible  pipes  conveying 
f l u i d ,   e l a s t i c  systems  subjected  to  impinging  fluid jets, as well as c e r t a i n  
types of electro-mechanical  interactions.  

A common fea tu re  of  such  mechanical  systems,  or  rather  of  forces  acting 
on  them, is tha t   these   forces   a re   no t   der ivable  from a po ten t i a l  (by cont ras t  
t o  dead  loads)  and as a r e s u l t  a s t a b i l i t y   a n a l y s i s  based on Euler's  concept 
of   bifurcat ion of equilibrium may break down. 

For  such  problems a more fundamental  approach t o  problems of s t a b i l i t y  
has t o  be  followed,  one  which is, for  instance,  based  on  the dynamic  method 
of inves t iga t ing  small motions  induced a s  a r e s u l t  of perturbations  of  the 
pos i t ions  of equilibrium. One f i n d s   t h e n   t h a t   s t a b i l i t y  of  a mechanical 
system  subjected  to  forces  which are not   der ivable  from  a po ten t i a l  may, gen- 
e r a l l y ,  be los t   e i ther   th rough  osc i l la t ions   wi th   increas ing   ampl i tude   o r  
through a nonoscillatory  motion away from the  equilibrium  posit ion.  In the  
former  case no bi furca t ion  of equi l ibr ium  ex is t s  and therefore   Euler ' s  method 
breaks down. I n   t h e  latter case  the dynamic  method l eads   e s sen t i a l ly   t o   t he  
same resu l t s   a s   Eu le r ' s  s ta t ic  method  of ana lyz ing   s tab i l i ty .  

A s igni f icant   p roper ty  of forces  which are   not   der ivable  from a po ten t i a l  
i s  t h e i r  dependence  on the  instantaneous  posi t ion  or   configurat ion of the  sys- 
t e m  upon which  they are acting.  That is these   forces   fo l low  in  some a p r i o r i  
prescribed manner the  motion  of  the  system.  For this reason  they have  been 
termed not  only  nonconservative  forces,   but  also  circulatory  forces,   configu- 
ration-dependent  forces  or  simply  follower  forces. 

3 



1.2 A i m  and  Scope  of the Monograph 

The present  monograph centers  on problems  of s t a b i l i t y  of equilibrium  of 
mechanical  systems  with  follower  forces.  Follower  forces, as acting  on me- 
chanical  systems, may be of aerodynamic,  hydrodynamic, e lectromagnet ic   or  
thermal  origin.  Furthermore,  they  occur  frequently i n  automatic  control 
sys tems . 

The beginnings  of  analyses  of  stability  of  mechanical  systems  with  fol- 
lower forces  go  back t o   t h e  late nineteen-twenties and are associated  with  the 
name of  Nikolai  [2,3] i n  Russia. Comprehensive,  fundamental s tud ie s  were car- 
r ied   ou t  by Ziegler  [4-71 i n   t h e   f i f t i e s   i n  Switzerland. The  book  by Bolotin 
[8], devoted i n  i ts  entirety  to  nonconservative  problems of the  theory of 
e las t ic   s tab i l i ty ,   p resents   a   wel l - rounded  s ta te  of  knowledge a s  of  a  decade 
ago. 

Several   areas of s t a b i l i t y  problems  of  mechanical  systems  with  follower 
forces,  such as the  highly  developed area of aeroe las t ic i ty   (c f .   Garr ick  [g]) 
and s t a b i l i t y  of ro t a t ing   sha f t s ,  w i l l  not  be  considered  in  the  present mono- 
graph  since  these  areas  have  already  received  considerable  attention. 

The primary  purpose  of  the  present monograph is  l imi t ed  i n   t h e   s e n s e   t h a t  
a t t en t ion  is confined  to  the  developments  of  the last decade, i.e., a f t e r   t h e  
publ icat ion of [SI, and  narrowed down fu r the r  by emphasizing  the  analytical and 
experimental   invest igat ions  in  which the  author and h i s  coworkers were involved 
during  the  period  of  the last seven  years. A review of t h e  work, including 
numerous references,  through  the  year 1966, is contained i n   r e f e r e n c e  [lo]. 

Concepts of s t ab i l i t y   i n   ma themat i ca l  terms, as.well as criteria of sta- 
b i l i t y  are reviewed b r i e f l y   i n   t h e  s t i l l  introductory  Chapter 11, together  with 
means of ana ly t ica l   spec i f ica t ion  of follower  forces.  Chapter 111 is devoted 
t o  a discussion of nondissipative (i.e., purely elastic) systems  with two 
degrees  of freedom. An i l l u s t r a t i v e  example is considered f i r s t  and a general  
linear  system  next. A remarkable  feature  of  systems  with  follower  forces is  
tha t  even small damping forces  and certain  other  velocity-dependent  forces may 
have a s t rong   des tab i l iz ing   e f fec t .  Such des t ab i l i z ing   e f f ec t s ,   bo th   i n   d i s -  
c r e t e  and continuous  systems, are t r e a t e d   i n   d e t a i l   i n  Chapter I V .  The spec ia l  
considerations which must  be introduced i n   t h e   a n a l y s i s  of continuous  systems 
are  discussed  in  Chapter V. Mechanical systems  with  follower  forces may re- 
qu i r e   pa r t i cu la r   p rocedures   i n   t he i r   s t ab i l i t y   ana lys i s .  Such methods, in-  
cluding  energy  considerations,   are  dealt   with  in  Chapter V I .  

The ana ly t i ca l  work on  systems  with  follower  forces is sometimes  being 
c r i t i c i z e d  as being  purely  mathematical and as having no re levance   to   ac tua l  
mechanical  devices and s t ruc tures .  To counter   th i s  argument, several   possibi-  
l i t ies  of phys ica l   rea l iza t ion  of  mechanical  systems  with  follower  .forces are 
examined i n  Chapter VII. Qualitative  observations  on  demonstrational  labora- 
tory models  and quantitative  experiments are reported  in  Chapter V I I I .  

4 



CHAPTER I1 

CONCEPTS OF STABILITY AND FOLLOWER FORCES 

The term "s tab i l i ty"   ass igns  a q u a l i t y   t o  a state of a system  which 
s igni f ies   tha t   poss ib le   d i s turbances  of the  system w i l l  n o t   e s s e n t i a l l y  change 
the  state. This   qua l i ta t ive   descr ip t ion  is necessar i ly  vague and prec ise  
mathematical meaning is t o  be  assigned t o   t h e  terms "state," "disturbances" 
and "essent ia l  change. I' 

The required  mathematical  apparatus  has  been  supplied  by  Liapunov [ll]. 
Let us  consider a discrete  system w i t h  r degrees of freedom  described by r 
generalized  coordinates q , and l e t  us examine the   spec ia l  case of the state 
of equilibrium i 

If the  system is dis turbed at a time t = t a t  any i n s t a n t  t i t s  state will 

be character ized by (generally  nonvanishing)  coordinates q  and by generalized 

v e l o c i t i e s  4, = dt and can  be  thought of as a p o i n t   i n  a 2r-dimensional 

Euclidean  space  with  coordinates zk 

0' 

d q i  
i 

Zk = z,(t) (k = 1,2,0..2r) (2.2) 

The state of  equilibrium (2.1) according  to  Liapunov, is  said t o   b e   s t a b l e  if 
for any e > 0 we can  f ind a 6 > 0, depending on E only (and possibly on to) 
such  that 

2r 

1 z 2 C 6  a t  t =  

k-1 

implies 

2r  

k=l 

In   the  opposi te  case the state (2.1) is called  unstable.  

The s t a t e  is  ca l l ed   a sympto t i ca l ly   s t ab le   i f  i t  is s t a b l e  and i n   a d d i t i o n  

2r  

k=l  

5 



This  fundamental   definit ion of s t a b i l i t y  by Liapunov has been  refined and 
supplemented in various ways and reference  should  be made t o   t h e  comprehensive 
texts by Minorsky Cl.21, Krasovskii [13], b S a l l e  and Lefschetz [14], and Hahn 
[lS], A host of "fine" d e f i n i t i o n s  has been  introduced,  eogos  uniform  stabi- 
l i t y ,   q u a s i - e q u i a s y m p t o t i c   s t a b i l i t y ,   t o t a l   s t a b i l i t y ,   s t a b i l i t y   i n   t h e  whole, 
etc., [15] i n  o rde r   t o   c l a s s i fy   poss ib l e   e f f ec t s  of disturbances,  

For  the  purposes of the  present monograph i t  appears   to   be  suff ic ient   to  
employ j u s t   t h r e e  terms, namely, 

1) Asymptotic s t a b i l i t y  
2) Efarginal s t a b i l i t y  
3) I n s t a b i l i t y  

"ypes 1) and 3) have  been  defined  above, Type 2) character izes  a state which 
is stable ,   again as defined  above,  but  not  asymptotically  stable. 

Expressed  verbally, one can  say that a state of equilibrium is  asympto- 
t i c a l l y   s t a b l e   i f  small dis turbances ,   in f l ic ted  upon the  system at a c e r t a i n  
time,  decrease  with time, The state is IQargiMlly s t ab le   i f   t he   d i s tu rbances  
do neither  decrease  nor  increase with time,  and i t  is uns tab le   i f   t he   d i s -  
turbances  increase  with t h e ,  

Side by side  with  Liapunov's  concept  of  stabil i ty,  it is possible  and 
meaningful to   introduce alternate de€ini t ions,  The two o the r  most current  
ones are due to   Poincard   (orb i ta l   s tab i l i ty )  and t o  Lagrange  (boundedness of 
motions and orbi t s ) ,   bu t   the   d i s t inc t ion   vanishes   for   the   spec ia l   case  of equi- 
librium states. Further,  i t  would be of i n t e r e s t   t o  examine the  behavior  of 
the  system  under  continuous  disturbances and under a r b i t r a r i l y   l a r g e   d i s t u r b -  
ances.  For a discussion of t h e   i n t e r r e l a t i o n  of var ious  concepts   of   s tabi l i ty  
of  dynamical  systems,  reference is made to  Hagiros [16),  Generalization of 
these  concepts  to  continuous  systems is not  readily  accomplished,  becausr  the 
notion of a metric has t o  be  introduced,  cf,  Chapter V, 

liming  accepted a d e f i n i t i o n  of s t a b i l i t y ,   t h e   f i r s t   s t e p   i n   t h e   a n a l y s i s  
of the  state of equilibrium of a system  iwolves  the  considerat ion of criteria 
which  would permit  to  decide  whether a given state is asymptotically  stable,  
marginally  stable  or  unstable.  In dynamical, discrete  systems ~ P J O  categories  
of criteria have  been  evolved,  one  being  based on the  construction of the so- 
called  Liapunov's  function  (Liapunov's  direct  method),  the  other  being  based on 
the  examination of solut ions of equations of motion  and, in continuous  system8, 
modal expansions. In problems  of s t a b i l i t y  of  equilibrium  the  former is re- 
la ted  to   the  energy  cr i ter ion which in   tu rn ,   for   cer ta in   sys tems,  is equivalent 
to   the  static cr i te r ion   (Euler  method), The latter is usual ly   referred  to  as 
t h e   k i n e t i c   c r i t e r i o n   o r   t h e   v i b r a t i o n   c r i t e r i o n .   F o r  a detai led  discussion of 
s t a b i l i t y   c r i t e r i a   r e f e r e n c e  is made t o  [5-7,141, 

The app l i cab i l i t y  of s t a b i l i t y  criteria, as emphasized by Ziegler  [1,5-7, 
173, strongly  depends on the   forces   present  i n  the  mechanical  system. I f   t he  
forces  depend e x p l i c i t l y  on time, they are cal led  instat ionary,   i f   they do 
not,  they are cal led  s ta t ionary.  The s ta t ionary  forces   general ly  depend on 
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both  the  generalized  coordinates and general ized  veloci t ies .  If veloci ty-  
dependent  forces  do no w.orlc i n  any  elementary  change of posit ion,   they are 
cal led  gyroscopic   forces   (e .&  Coriol is   forces) ;   i f   they do negative  work, 
they are r e f e r r e d   t o  as diss ipa t ive   (eego   v i scous  damping,  drag). Among the 
velocity-independent  forcess i.e., forces  which  depend on generalized  coordi- 
nates  only,  one  encounters  those  which are derivable from a single-valued po- 
t e n t i a l ,  These,  such as f o r  example, g rav i ta t iona l   forces ,  are termed non- 
circulatory  (or  conservative).  All other  velocity-independent  forces are re- 
fe r red   to  as c i rcu la tory ,  or nonconservative,   or  follower  forces.   Strictly 
speaking,   diss ipat ive,   ins ta t ionary and follower  forces are a l l  nonconservative 
forces,   but  the terms circulatory  forcea,   fol lower  forces  and nonconservative 
forces  are used i n   t h e  literature with  the same meaning and w i l l  be employed 
interchangeably  in   this  work., 

The bulk of the  present monograph i s  concerned  with  various  classes  of 
mechanical  aystem whose common fea ture  i t  is that   fol lower  (or   c i rculatory,  
or "nonconservative")  forces are always  present. To inves t iga te   the  state of 
equilibrium of such  systems,  the  analysis  can be based on l inear ized  equat ions 
of motion (or equilibrium, i n  ce r t a in   ca ses )   i n   t he   v i c in i ty  of the state t o  be 
characterized.  Since  follower  forces are stationary,   the  system of equations 
obtained is autonomous  (no e x p l i c i t  time  dependence)  and homogeneous  (no forcing 
terns) .   In   discrete   systems  the  c i rculatory  nature  of the  follower  forces mani- 
f e s t s   i t s e l f   i n   t h a t   t h e   f o r c e   m a t r i x  is not  symmetric,  while i n  continuous 
systems  the  boundary  value  problem is nonself-adjoint. 

I n   t h i s  monograph both,  extensions of Liapunov's  direct method  and the 
"solution" method a r e  employed,  with  emphasis  on  the l a t t e r .  .%n d i s c r e t e  sps- 
tens one is  then  concerned  with a study of solut ions of the  type 

which leads  to  a study 
equation [18]. If the 

tive  (or  the  imaginary 

o r  

of the  rootn 1 (or ~1 ) of the   assoc ia ted   charac te r i s t ic  
r e a l  parts of a l l  the   ' charac te r i s t ic   roo ts  Ak are nega- 

p a r t s  of a l l  the   cha rac t e r i s t i c   roo t s  yc are pos i t ive) ,  

k 

the syoten is  asymptotically  stable.  By c o n t r a s t ,   i f  a t  l e a s t  one  of the  char- 
a c t e r i u t i c   r o o t s  Ak is  pos i t i ve  (OK wk is negative),  the  system is unstable. 

If a l l  the   roo ts  Xk are pure  imaginary (or yc pure real), the  system i s  margi- 

n a l l y   u t a b l e   ( c r i t f c a l  case). Liapunov's  theorems assert that  l inearized  ana- 
l y s i s  is  appropriate   for   asymptot ical ly   s table  and unstable  aystems.  In case 
of marginal   otabi ldty of a linearized  system,  no  statement  can  be made regarding 
the  behavior of the actual nonlinear  system. 

The nature of  the  roots (or w ) can  be  determined  without  calculating k 
the  rooto  themselves. A var i e ty  of methods  have  been  dgveloped for   this   purpose 
[18Ip one of the  most  widely  used  being  associated  with  the names of Routh and 
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Hurwitz." Various  def ini t ions of follower  forces as applied  to  continuous 
bodies  have  been  discussed by Sewell [19], Nemat-Nasser [2C] ,  and Shieh and 
Masur [21). 

For   add i t iona l   r e f e rences ,   r e l a t ing   i n   pa r t i cu la r   t he  two areas of sta- 
b i l i t y  and control ,   the   reader  is  refer red   to   the  recent bibliography by Wang 
[ 1081. 

* 
It has been ca l led   recent ly   to   the   au thor ' s   a t ten t ion  by P. C. Parks 

[lo61  that  i t  was Hermite [lo71 who has  established  considerably earlier the 
conditions  generally known as the "Routh-Hurwitz cri terion." 
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CHAPTER 111 

NONDISSIPATIVE SYSTEM WITH TWO DEGREES OF FREEDOM 

3.1 An I l l u s t r a t i v e  Example 

TO i l l u s t r a t e  some charac te r i s t ic   types  of dynamic behavior ,   in   the 
v i c i n i t y  of an equilibrium  configuration,  of a mechanical  system  subjected 
t o  a follower  force, l e t  us  consider a double pendulum, Fig. 3.1, composed 
of two r ig id   ba r s  of equal  lengths a ,  which carry  concentrated masses ml= 2m, 
m2= m. The pos i t i on  of equilibrium cpl= (Q2* 0 is t o  be investigated when the 

system is subjected  to a force P act ing  a long  the  bars   (posi t ive when com- 
pressive).   For  this  purpose a perturbed  configuration (ql# 0, q2# 0, but  both 

small) is inves t iga t ed .   In   t h i s   pos i t i on   e l a s t i c   r e s to r ing  moments ccp and 

c(cp2-cp1) are induced a t  the   jo in ts  and the   d i r ec t ion  of the  load P is specif ied 

t o  form an  angle w2 with   respec t   to   the   d i rec t ion  of the  bar   in   the  equl l ib-  

rim QOSitiOn. 

1 

This system  has  been  investigated by Ziegler [5] for   the  special   case 
a = 1, which may be termed the  case of purely  tangential  loading.  In Ref. 
[22] t he   fu l l   r ange  - m < CY < has  been examined. As can be e a s i l y   v e r i f i e d ,  
the  load P (and thus  the  system) i s  conservative  only  for = 0 .  The system 
may be considered a two-degree-of-freedom model of a continuous  canti lever.  

The a n a l y s i s ,   r e s t r i c t e d   t o  a l inear ized  formulat ion,   consis ts   in   the  de-  
termination  of  the two natural   f requencies  of f r ee   v ib ra t ion  as a function of 
the  loading.  For  sufficiently small loads  both  frequencies  are real and the 
system is  thus  stable  under  an  arbitrary small disturbance,  exhibit ing bounded 
harmonic o s c i l l a t i o n s .  As the  load i s  increased ,   ins tab i l i ty  may occur by 
e i t h e r  one frequency becoming zero  (s ta t ic   buckl ing)  a t  t he   c r i t i ca l   l oad ing  
and then  in  general  purely  imaginary,  or  the two frequencies becoming  complex, 
having  passed a common real value a t  the   c r i t i ca l   loading   (margina l   s tab i l i ty ) .  
The ensuing  motion  under a supe rc r i t i ca l   fo rce   i n   t he   f i r s t   c a se  is  nonoscil- 
latory  with  the  amplitude  increasing  exponentially  (divergent  motion),  and the 
c r i t i ca l   load   can  be determined  s ta t ical ly  by the  Euler method. In the  second 
case  the  ensuing  motion is  an   o sc i l l a t ion   w i th  a def ini te   per iod  but   with  an 
exponentially  increasing  amplitude, and the cr i t ical  load  cannot  be found by 
the  Euler method because  no  associated  adjacent  equilibrium exists. The f i r s t  
case  could be ca l l ed  "static i n s t a b i l i t y "   i n  view  of the  behavior a t  t h e   c r i t i -  
cal   load,  and the second "dynamic in s t ab i l i t y . "   In   ae roe la s t i c i ty ,  however, 
analogous phenomena have  been termed "divergence" and " f lu t te r , "   respec t ive ly ,  
[ 2 3 , 2 4 ] ,  and we propose t o  employ this   terminology  in   the  sequel .  
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Lagrange's  equations i n   t h e  form 

Qk (L T-V, k = 1,2) 

are used to   e s t ab l i sh   t he   l i nea r   equa t ions  of motion, in which the   k ine t i c  
energy T is 

the  potential   energy V of the   res tor ing  moments is 

and the  generalized  forces Qk (due to   appl ied  loading)  are 

Ql =I P".Y, - QV21 

Q2 = (1-a)(P23 

These forms lead  to   the  equat ions of motion 

3m.t 2 'p, + 1 2 G 2  + (2C-Pl)'p1 + (aP4-c)cp2 = 0 

yield  the  frequency  equation 

where 

= 2m 4 2 4  
PO 

p2 = IIlE 2 [7c - 2(2-cr)PA1 

p4 = c 2 - (l-a)[3cPR - (P4I21 

( 3 . 4 )  
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The fou r   cha rac t e r i s t i c   roo t s  will occur   in   pa i r s ,   the   pos i t ive  and nega- 

t ive   roo ts   o f   the  two values of w2 obta inable   d i rec t ly  from the  frequency 

equation.  For a negative w2 one root   descr ibes   an  exponent ia l ly   divergent  

motion; w2 = 0 corresponds  to  neutral  equilibrium,  the  appearance  of  an  ad- 
jacent  equilibrium  configuration (static buckling,  divergence). A complex 

value  of w y i e l d s  one root   descr ib ing   an   osc i l la t ion   wi th   increas ing  arnpli- 

tude   ( f lu t te r ) .  The system is  thus  stable  only as long as both  values of w 2 

are real and posi t ive.  We are i n t e r e s t e d   i n   t h e  manner i n  which w var i e s  
v i t h  P fo r   d i f f e ren t   va lues  of CY. This i s  accomplished by inves t iga t ing   the  

2 

2 

curves  of P versus 

Expanding the 

equat ion   in  w2 and 

real values  of w . .2 

A(w2I2 + B(w2PI,) + 

where the  discriminant,  

4m214 [2  (1-a) 

C(PJ!)~ + D(w2) + E(P1) -I- F = 0 

B2 - 4AC, is  

+ a2] 

(3.9) 

(3.10) 

Since  this  expression is always  positive,  the  frequency  curves (P versus w2; 

P, UI , real) are a l l  of the  hyperbolic  type. 2 

Except for   degenerate  cases, which s h a l l  be noted,  there are but two 
general   types   of   hyperbolas ,   wi th   regard  to   or ientat ion  in   the real w2, PI, 
p lane,   that  may be encountered. These two types ,   qua l i ta t ive ly ,   a re  of 
"conjugate"  orientations.  

In   the   f i r s t   type ,   each  of the two branches  of  the  hyperbola  yields a 

s ingle   ( rea l )   va lue  of w2 for  every  load and the two values  never  coincide. 
I n s t a b i l i t y  may occur  only  in  the form of divergence  or  divergent  motions. 

In   the second general  type of hyperbola,  the two values  of w , f o r  any 

load  producing real values of , l i e  on the same branch of the  curve.  For 
each  branch  there is one cr i t ical  load a t  which the two values  coincide. 

Regardless  of  the  behavior  indicated by the real values of w2 on the  branches, 
these two cr i t ical   loads  a lways  bracket  a single,   l imited  range of the  load 

"between" the two branches of the  hyperbola,   for which the  values of w a r e  
complex and the  free  motions are of  the  flutter  type.  Since  the  system must 
be   s t ab le   fo r   su f f i c i en t ly  small loads,   these cr i t ical  loads  must  be of the 
same s i g n   f o r  any  given  value  of e. 

2 

2 

2 
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The so lu t ion  of the  frequency  equation is 

2 7c - 2(2-cr)PA 7 {4(P,t)2[2(1-~}- fl-g21 -4cQ,,8:.cr> +-41c 1 2 112 
w 

192 2 4mA 
(3.11) 

from  which P versus u) can be p lo t t ed   fo r  any a. We de te rmine ,   f i r s t ,  

the   cr i t ical   loads  corresponding  to   coincidence of frequencies  (occurring 
i n   t h e  second  type  of  hyperbola) by se t t ing   the   d i scr iminant   equa l   to   zero  

in   the   equat ion   for  w1,2 . This  yields,   €or  the  cri t ical   loads,   in  nondi- 

mensional  form,  the  equation 

1,2 

(3.12) 

Real  values of these  cr i t ical   loads  are   associated  with  the second  type 
of hyperbola, complex va lues   wi th   the   f i r s t .  We wish  to  determine  the  tran- 
s i t i ona l   va lues  of a. Thus, se t t ing   th i s   d i scr iminant   equa l   to   zero ,  

( 8 - c ~ ) ~  - 41  [2(l-a) + a2] = 0 (3.13) 

y ie lds   the   roo ts  atr = 0.345, 1.305. 

Subs t i tu t ing   th i s   equa t ion   in to   tha t   for  u) y i e l d s  
192 

(3.14) 

with a = atr = 0.345,  1.305. 

Thus two t rans i t iona l   va lues  of CY are obtained, a t  each of  which the 
hyperbolas  degenerate  into two i n t e r s e c t i n g   s t r a i g h t   l i n e s .  Between these 
values of the  second  type of hyperbola i s  found to  occur,  and the phenome- 
non of f l u t t e r  i s  thus  l imited  to  this  range of a. The cor responding   c r i t i ca l  
loads are a l l  positive  (compressive). 

Consider  next  the  constant term p in  the  frequency  equation. The Euler 4 
method i s  equ iva len t   t o   s e t t i ng  p4 =I 0(w2= 0 ) ,  corresponding  to   intercepts  of 

the  hyperbolas on the  P-axis.   Sett ing p = 0 we obtain  for  the  Euler  buckling 

loads,  in  nondimensional form 
4 

(3.15) 
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For real values of the  load we must  have (I 5 5 o r  CY > 1. Thus there  are cri-  

t i ca l   va lues  of a(acr = 3, l), marking the limits of a range   in  which no ad- 

jacent  equilibrium  posit ion  occurs  in  the  system  for any value of the  load. 

5 

We note   f raa   the  form of p tha t   the  lower c r i t i c a l   v a l u e  of 01 i s  a 4 
function of   the   e las t ic  and geometric  parameters of the  system, and under a 
v a r i a t i o n  of these  parameters  might  increase  indefinitely,  approaching one as 
a l imit .  Thus, f o r  CY 1 there  is a class of  systems  or  loadings  wherein  the 
absence  of  an  adjacent  equilibrium  configuration  for  any  value of the  load i s  
a function of   the  e las t ic  and geometric  parameters. However, f o r  a = 1 ,  the 
terms i n  p4 involving P drop  out  entirely,   leaving a p o s i t i v e   d e f i n i t e  ex- 

pression which contains   the  e las t ic   parameter   a lone.   Therefore ,   in   this   spe-  
cial  case  alone, we may say  that  i t  is  the   spec i f ica t ion  of the   loading   i t se l f  
which results in   the  absence of any possible  adjacent  equilibrium  configuration. 
We note   here   that   in   the  case of a uniform  continuous  cantilever  subjected  to a 
load  characterized by the same type of parameter,  the  Euler method reveals  a 
similar c r i t i c a l   v a l u e  of the  parameter, which in   t ha t   ca se  is one ha l f .  

A t h i r d   s e t  of values of (Y of i n t e r e s t  is denoted by a', and i s  associated 
with a coincidence of an  Euler  load  with a c r i t i c a l  load   for   f lu t te r .   This  

occurs when a value of w , a t  which wz = u)22, i s  zero. Thus we set u) 

which i s  equiva len t   to   se t t ing  p2 = 0 ,  p4 = 0 ,  simultaneously; i .e . ,  

2 2 2 
1,2 = 0 ,  

[7c - 2(2-cr)PRl = 0 (3.16) 

and 

Solving  the f i r s t   e q u a t i o n   f o r  PQ and subs t i t u t ing   i n to   t he  s$cond y ie lds  a 
quadrat ic   equat ion  in  CY, the   roo ts  of which a r e  found t o  be (Y = 0.423,  1.182. 

In  the  sequel we r e s t r i c t  our   de ta i led   a t ten t ion   to  0 < c 1, a s   t h i s  
range i s  somewhat more meaningful  physically and i s  suff ic ient   to   demonstrate  
a connection between the   va r ious   i n s t ab i l i t y  phenomena. Figure 3.2 shows the 
frequency  curves  for  the  various  values of cy of p a r t i c u l a r   i n t e r e s t   i n   t h i s  
range. From these  curves,   in which both  branches  of  the  hyperbolas and t h e i r  
asymptotes  are shown for  completeness, we can  determine by inspection  the par- 
t i cu l a r   cha rac t e r  of the  frequency  curve  for any (y in  the  range 0 s CY S; 1, and 
we proceed now t o  a discussion of  the  behavior of the   ind iv idua l   curves   in   th i s  
range and the   va r ious   s t ab i l i t y  phenomena t h a t   t h e y   i l l u s t r a t e .  

For 0 S CY < cytr the  hyperbolas are a l l  of t h e   f i r s t   t y p e ,  and the  behavior 

is  as previously  discussed. The frequency  curves and the   cha rac t e r i s t i c  beha- 
v io r  of the  nonconservative  systems are qual i ta t ive ly   ind is t inguishable  from 
the  conservative  case.  Obviously,  the  Euler method would yield  the  lowest 
buckling  load, which here marks the  boundary  between  the  single  stable and 

13 

" 



unstable  ranges  of  the  loading. A k ine t i c   ana lys i s  would yield  nothing  addi- 
t i ona l .  With increasing  values  of CY i n  this range,  the  hyperbolas draw c lose r  
to   their   asymptotes  and f ina l ly   degene ra t e   i n to  two s t r a i g h t   l i n e s  a t  cy = u tr ' 
as previously  noted.  This case marks the  f i rs t   occurrence  of  a coincidence of 
the   charac te r i s t ic   roo ts .  

For  values of u greater   than atr in   th i s   range ,   hyperbolas  of the second 

type,  with  the  conjugate  orientation,  occur and p u l l  away from their  asymptotes 
with  increasing CY. The upper  branch l ies e n t i r e l y   i n   t h e  second  quadrant,  cor- 
responding  to  divergent  motion, and s u c h   a n   i n s t a b i l i t y   f o l l w s   f l u t t e r   w i t h  
increasing  load. 

In   th i s   range ,   for  CY < CY < CY' the  coincidence of frequencies on the tr 
lower  branch  occurs a t  negative  values  of w , with  divergent  motion  already 
characterizing  both modes. Thus i n   t h i s   c l a s s  of systems  the boundary  between 
the   s ing le   s t ab le  and unstable  ranges of the  loading parameter is marked so le ly  
by the  appearance of an   ad jacent   equi l ibr ium  conf igura t ion   in   the   f i r s t  mode, 
and is obtainable by the  equilibrium  approach. The system is unstable   for  a l l  
higher  loads. The cr i t ical   loads  corresponding  to   coincidence  of   f requencies  
do  not mark any bound between s t a b i l i t y  and i n s t a b i l i t y .  

2 

Thus, for  such  systems,  the  Euler methed would y ie ld   the  cr i t ical  load 
with  regard  to   s tabi l i ty ,   even though the phenomenon of f l u t t e r  is possible a t  
sane higher  loadings.  Conversely,  the  sole use of t he   k ine t i c  method, if em- 
ployed so as to  determine  merely  the  cri t ical   loads  corresponding  to  the  coinci-  
dence of frequencies,  would lead  to  erroneous  conclusions. 

For CY = CY', w2 a t  the  coincidence  of  the  frequencies on the lower  branch 
is zero. The sequence of ins tab i l i t i es   wi th   increas ing   load  is  the same as i n  
the  preceding  range of CY. 

For a > CY' the  coincidence of frequencies  occurs a t  posi t ive  values  of w 
and t h i s   c r i t i c a l   p o i n t  now marks the bound between a s t a b l e  and unstable  range 
of the  load. However, f o r  CY' < CY < aCr the  lower  branch s t i l l  in t e r sec t s   t he  

load  axis ,  and the two co r re spond ing   c r i t i ca l   l oads ,   bo th   occu r r ing   i n   t he   f i r s t  
mode, now bracket a separate  range of i n s t a b i l i t y  through  divergent  motion. 
Such a system is  rather   remarkable   in   that  i t  d isp lays ,   for   d i f fe ren t   loads ,  
l o s ses   o f   s t ab i l i t y  by both  divergence and f l u t t e r .  

2 

Thus f o r  CY' < CY < aCr we have a ra ther   in te res t ing   sequence  of free  motions 

with  increasing  load,  result ing  in  multiple  regions of s t a b i l i t y  and i n s t a b i l i t y .  
This is i l l u s t r a t e d   i n  Fig .  3 .3  by the  frequency  curve  for  the  arbitrary  value 
of (Y = 0.5. Such a system  has   character is t ic   f ree   motions which include  succes- 
s ive ly   s t ab le   o sc i l l a t ions ,   d ive rgen t   mo t ion ,   s t ab le   o sc i l l a t ions ,   f l u t t e r ,  and 
then  divergent  motion  again  for a l l  higher  loads.  In  such a s i tuat ion  the  lowest  
c r i t i ca l   l oad  marking the  appearance of a n   i n s t a b i l i t y  would s t i l l  be a buckling 
load,  obtainable by the E u l e r  method. However, the  exis tence of the second range 
of s t a b i l i t y ,  above the second  "buckling"  load, as well  as i t s  upper limit, would 
be  revealed  only by a de ta i led   k ine t ic   ana lys i s .  
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I 

For a = cycr the two buckling  loads,  bracketing  the  lower  region of i n s t a -  

b i l i t y ,   co inc ide  and the  frequency  curve i s  tangent  to  the  load axis. Thus i n  
th i s   case   there  is a d ivergence   ins tab i l i ty  a t  that   i solated  load,   wi th no 
associated  divergent  motion  for  neighboring  loads. The sequence of i n s t a b i l i t i e s  
is  otherwise  the same as f o r  a' < a < acr. 

For S a the   lowest   cr i t ical   load was always a buckling  load,  obtainable c r  
by the  equilibrium  approach, and varied  continuously  with cy. Above a no  ad- 

jacent  equilibrium  configurations  occur and the lowest c r i t i c a l   l o a d  is t ha t  
corresponding  to  the  coincidence of the  frequencies.  There is  thus a discont i -  
nui ty  (jump) i n   t h e  magnitude  of  the lowest c r i t i c a l   l o a d ,  a t  cy = cycr. Systems 

in   t he  class cyCr < cy 5 1 possess a single  range of s t a b i l i t y  and of i n s t a b i l i t y ,  

with a sequence of cha rac t e r i s t i c   f r ee   mo t ions   o f   s t ab le   o sc i l l a t ions ,   f l u t t e r ,  
and f ina l ly   d ivergence   for  a l l  higher  loads. 

c r  

The foregoing  discussion  could be  extended to   the  values  of a outside  the 
range 0 < a 5: 1, but i s  omitted  here  for  the  sake  of  brevity. However, a p lo t  
shov ing   t he   va r i a t ion   i n   a l l   t he   c r i t i ca l   l oads   fo r  a w i d e r  range of a, including 
the  ent i re   region of f l u t t e r   i n s t a b i l i t y ,  and with  the  asymptotic  behavior of 
the  cr i t ical   loads  for   divergence  c lear ly   indicated  for   extreme  values  of a, is 
given  in  Fig.  3 . 4 .  

Considering  systems  corresponding  to  given  values of a ,  t h i s   p l o t   i l l u s -  
t r a t e s   t h a t  in systems  displaying  multiple  regions (and types) of i n s t a b i l i t y  
under  compressive  loading,  the  lowest  critical  load may correspond  to   e i ther  
divergence  or   f lut ter .   Also  i l lustrated is the  existence of systems  displaying 
i n s t a b i l i t y  by divergence  for  both  compressive and tensi le   loads.  

With the a i d  of the  parameter a in  the  simple model analyzed  here, we have 
attempted  to show a connection between i n s t a b i l i t y  phenomena of divergence and 
f l u t t e r  by demonstrating a gener ic   re la t ionship  between  such disparate  frequency 
curves as those  characterizing (y = 0 and Q- = 1. Thus,  such  curves (and sys  tems 
characterized by  them) may be seen  to be not of a s ingular  or isolated  nature ,  
bu t   par t  of a continuous  "spectrum" of frequency  curves. 

The just i f icat ion  for   consider ing  the  ent i re   range of - = < (y < + Q) may be 
made clearer  through  the  following  observation. The type of loading  specified 
may be considered as the result of a superposit ion of two component loads,  cor- 
responding  to   constant-direct ional   ver t ical   loading ( Q - 0 0 )  and tangential   loading 
(a= 1) ,   t he  two being  kept  in a cons t an t   r a t io  as the  loading is varied.   In 
such a perspective,  0 <cy < 1 corresponds  to  these component loads  having  the 
same sense. Then, < 0 and a > 1 corresponds  to  these component loads  having 
opposite  senses,  with  their  relative  magnitudes  determined by the  magnitude and 
s ign of a, and with  posit ive  load  always  corresponding  to a resultant  compressive 
loading . 

The e f f e c t  of weights  of  the  masses  has  not  been  included  here,  but  our  in- 
ves t iga t ions   ind ica te   tha t   for  small such constant   loads  the  pr incipal   effect  
consis ts   in   shif t ing  the  f requency  curves   in   the  posi t ive  (negat ive)   direct ion 
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of   the  abscissa   for  a suspended (inverted,  Fig.  3.1) model. Refer r ing   to   the  
frequency  curve in   F ig .  3.2 f o r  a = 1, we can  see  that   the   shif t   caused by sta- 
b i l iz ing   cons tan t   forces  would r e s u l t   i n   a n   i n t e r c e p t  of the  upper  branch  of 

the  hyperbola on the (u2 = 0 coordinate  axis.  This is ,  in   fac t ,   the   case   ana-  
lyzed by Ziegler [SI, i n  which the  Euler method yielded a h igher   c r i t i ca l   load  
than  the  kinet ic  method,  and  which has   contr ibuted  to   the  general   d iscredi t ing 
of t he   app l i cab i l i t y  of the  static  approach  in  nonconservative problems.  This 
p a r t i c u l a r  case i s  somewhat equivalent t o  the   s i tua t ion   occur r ing   here in   for  
1 < (y < atr, i n  which,  under  compressive  loading,  the  system becomes unstable 

through f lut ter ,   wi th   the  higher   cr i t ical   load,   for   divergence,  of  no conse- 
quence. 

3.2  General System with Two Degrees of Freedom 

3.2.1  Governing  Equations 

Let  us now general ize   the  specif ic   resul ts   obtained  in   the  previous  sect ion 
and consider a general  system  with two degrees of  freedom. Let q 1, 92 be the 

pr incipal   coordinates  of the  system and the  equilibrium  configuration ql= q2= 0 

is  t o  be invest igated  with  regard  to   s tabi l i ty .  The system i s  characterized by 
i n e r t i a  (masses m and m ) and by restor ing  spr ing  constants  k and  k2. Further ,  1 2 1 
i t  i s  subjected  to  follower  forces whose magnitude i s  dependent on a s ing le  pa- 
rameter. The l inear   equat ions of motion may be then  wri t ten as 

m i i l  + klql + aTIPql + aT2Pq2 = 0 

m i i 2  + k2q2 + a;lPql + a;2Pq2 = 0 
(3.18) 

where a* a r e  assumed t o  be given. 
i j  

With the  abbreviations 

tui = k /m 
2 

i i  
(3.19) 

= a i p i  
* 

the  equations  of  motion  take on the form 

2 81 + 91 + a11Pq1 + 52Pq2  = 0 
(3.20) 

We wish to   character ize   the  posi t ion of equilibrium  for  various  ranges of P and 
for  various  ranges of the  system  parameters. For t h i s  purpose we inves t iga t e  
solut ions of the  type 
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k - 1,2 

which lead  to   the homogeneous set 

(-U h1 +CYllP) A1 + u12P% - 0 
2 2  

(3.21) 

(3.22) 

and f i n a l l y   t o   t h e   c h a r a c t e r i s t i c   e q u a t i o n  

where 

5 = w  * 2 si = 
2 i = 1,2 (3.24) 

This  equation  represent8 a curve of  second degree  (a  conic  section) and may 
be w r i t t e n   i n   t h e  normal  form 

F = as2 + 2bSP + cP2 + 2d5 + 2eP + f = 0 (3.25) 

where the   coef f ic ien ts   a re   g iven  by 

The inva r i an t s  of the   charac te r i s t ic   curve  are 

A '  

and 

6 =  

a b  

b c  

d e  
(3.27) 

(3.28) 

If A # 0, equation (3.25) represents  a regular second degree  curve, namely, 

a n   e l l i p s e   f o r  6 > 0 

a parabola   for  6 = 0 

a hyperbola  for 6 < 0 



whi le ,   i f  A = 0 ,  the  curve  degenerates  into two real  or   imaginary  s t ra ight  
l i nes .  

f ie  system may l o s e   s t a b i l i t y ,  as we have  seen,  ei ther by o s c i l l a t i n g  
with  increasing  ampli tudes  ( f lut ter)   or  by moving to   another   pos i t ion  of  equi- 
l i b r i m  (divergence). The c r i t i c a l   v a l u e s  of P are associated  with  s ta t ionary 
points  of t he   cha rac t e r i s t i c   cu rve   fo r  5 > 0 ( f l u t t e r )  and with  points  of in-  
tersection  with  the  P-axis  (divergence).  The ranges of system parameters CY 

i j  
and w w i l l  be determined  in which e i the r   f l u t t e r   o r   d ive rgence   o r   bo th   f l u t t e r  

and divergence may occur. 
i 

3.2.2  Parameter Ranges 

A. c'12~21 > 0 

It w i l l  be shown t h a t   i n   t h i s   c a s e  no f l u t t e r  can  occur.   First  we de- 
termine  the  points of i n t e r sec t ion  of the   charac te r i s t ic   curve  (which is a 
hyperbola)  with  the  P-axis which are 

P = -  (e *JZ) /c f o r  c # 0 (3.29) 

P = - f/2e  €or c = 0 (3.30) 

The discriminant 

(3.31) 

is pos i t i ve  and therefore   there   ex is t s  a t  least one real point of i n t e r -  
sect   ion.  

To f ind   s ta t ionary   po in ts  of the  character is t ic   curve  P(5,P)  = 0 ,  we 
have t o   c a l c u l a t e  

dF/dP = - (aF/ag)/  (aF/ap)  (3.32) 

and se t   th i s   der iva t ive   equal   to   zero .   I f  aF/bP # 0, i t  w i l l  be s u f f i c i e n t  
t o  examine 

aF/ag = 25 + 2 b ~  + 2d = o (3.33) 

This  equation is t o  be solved  for  and a s u b s t i t u t i o n  made i n t o  t h e  
equat ion  for   the  character is t ic   curve which in   tu rn ,   so lved   for  P, y i e lds  

P = - (I (e-bd) f i(e-bd)2-  (c-b)2(f-d2) ] /(c-b2) (3.34) 

In  terms of system  parameters  the  discriminant is 
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(e-bd) - (c-b ) (f-d ) - - a Q (5 -5 )2/4 
2 2 2 

12 21 2 1 (3.35) 

L e t  us assume f i r s t   t h a t   t h e  two natural   f requencies  u) of the syatem are 

d i s t i n c t .  (The spec ia l  case w1 = w2 w i l l  be discussed  separately.)  This 
impl ies   tha t   the   d i scr iminant   in  Eq. (3.34) is negative and thus no real 
points   with a hor izonta l   t angent   ex is t ,   ind ica t ing   imposs ib i l i ty  of occur- 
rence  of   f lut ter .  

i 

For c 2 0 and e < 0 ,  the   solut ions P of   the   charac te r i s t ic   equa t ion  are 
posi t ive.  The system is  margina l ly   s tab le   for  a l l  values of P in  the  range 
- CD < P < P1, where P1 is the smaller value  of P f r w  Eq. (3.29)  and unstable 

f o r  P 2 P1 (see Fig.   3.5a).   Similarly,   for c > 0 and e > 0 ,  both  solutions 

of Eq. (3.29) are negative. Hence, the  system i s  marginal ly   s table   for  
Pl < P < m (where I P1l < I P2 I )  and uns tab le   for  P s P1 (see   F ig .   3 .5~) .   I f  

c < 0 ,  the two roo t s  of Eq. (3.29)  have d i f f e r e n t   s i g n s .   I n   t h i s  case the 
region of   marginal   s tabi l i ty  is  given by P < P < P1, while  the system i s  un- 

s t a b l e   f o r  P 2 P1 and f o r  P i P2 (see  Fig.  3.5b). 
2 

B. a a = O  12 2 1  

If CYl2 and/or cr21 = 0, the   character is t ic   equat ion  takes  on the form 

which represents  two s t r a i g h t   l i n e s  which may be considered as the  l imiting 
case of the  hyperbolas of the  previous  section  approaching  their  asymptotes. 
Again f lut ter   cannot   occur  and s t a b i l i t y  can be l o s t  by divergence  only. The 
regions of marg ina l   s t ab i l i t y  and i n s t a b i l i t y  are given  in   Pig.  3.6. 

In   the  special   case a 11 = = 0 the  eigenvalue  curve  degenerates  into 

two s t r a i g h t   l i n e s   p a r a l l e l   t o   t h e   P - a x i s .  Thus no instabi l i ty   can  occur   for  
any value  of P. 

c. cr12ff21 > 0 

a)  Existence of F l u t t e r  

In   this   subsect ion  the  ranges w i l l  be es tab l i shed   in  which f l u t t e r  may 
occur  or  cannot  occur. We solve Eq. (3.33) f o r  P 

P a - ({+d)/b b # O  (3.37) 

and subs t i t u t e   i n to   t he   cha rac t e r i s t i c   equa t ion   w i th   t he  result 

AS2 - 2Bf + c = 0 (3.38) 
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which  has  the  solutions 

51, I1 = ( B  */z) /A f o r  A 0 

5 = C / 2 B  f o r  A = 0 

(3.39) 

(3.40) 

where 

2 
A = = - b = - ua11-cy22) + 4a12cy21]/4 

2 

C = cd2 - 2bed + b f 2 

and 

We f i r s t   cons ider   the   case  A # 0. With the  notat ion 

(3.42) 

(3.43) 

we obtain 

t B */z =S - 5, C ( X - Y ) ( V X - ~ ) - ~ P  2 (1Cv)f(x"y)  (1-V)p]/4 NI, I1 (3.44) 

which may conveniently be wr i t t en   i n   t he  form 

where 

Similar ly  w e  write A in   the  form 

A = - hlh2/4 

where 

h l = y - x - 2 p  

h 2 = y - x + 2 p  

20 

(3.46) 

(3.47) 

(3.48) 



Thus we find 

%,I1 = 5181 82 lhlh2 
1,II 1.11 (3 .49)  

Since gi and h are l inear   func t ions  of x and y ,  i t  i s  easy  to   specify con- 

d i t i ona   fo r  which 5, o r  sII, respect ively,  a r t  posi t ive  or   negat ive.  The 

r e s u l t  i o  given i n  Fig .  3.7 i n  which the  shaded  area  indicates  that   both 
solut ions si are negative and f lut ter   cannot   occur ,   whi le  in the  remaining 

area a t  least one 3 is  pos i t i ve  and f l u t t e r  may occur. 

i 

i 

In  the  case A = 0 we had 5 = c/2B  which may be wr i t t en  as 

The s o l i d   l i n e s   i n  F i g .  3.8 show the  region where 5 7 0, while  the  broken 
l ines   ind ica te  5 < 0. 

It remains t o   i n v e s t i g a t e  h a t  happens i f  b = 0 .  The c h a r a c t e r i s t i c  
equat ions  degenerate   in   this   case  to  

2 2 F E  5 + c P   + 2 d 5 + 2 e P + f  a 0  (3.51) 

and 

aF/ar: = 25 + 2d = o (3.52) 

It fol lows  that  

% = - d > O  (3.53) 

and the  equation  for P is now 

CP + 2eP + f - d2 = 0 2 

whose solut ions are 

P = - (f-d  )/2e 2 

Since 

2 2 
e - c(f-d 1 = - ct12~21(~2-51)2/4 > 0 

fo r  c f 0 

f o r  c = 0 

( 3 . 5 4 )  

(3.55) 

(3.56) 

(3.57) 

there  is always a real solut ion for P which means t h a t   f l u t t e r  may occur 
f o r  b = 0. 
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b) Existence  of  Divergence 

The discriminant D of equation (3.29) MY be   wr i t ten  as 

where 

tl = y - vx + 2pJv 

(3.58) 

(3.59) 

t2 = y - M - 2pJv 

It can be shown t h a t  t 5 0 arc equations  of  the  tangents  to  the  hyperbola i 
c 3 xy + p2 = 0 .  

Real points  of i n t e r sec t ion   w i th   t he   P -ax i s   ex i s t   i f  D 2 0.  The p la in  
area in   Fig.  3.9 indicates   the  region where D > 0 ,  i.e., where divergence i s  
possible ,  while the shaded area ind ica t e s   t ha t  D < 0 ,  where divergence i s  not 
possible. 

For  the case c = 0 we have to  use  equation (3.30)  and f ind  that   the  
so lu t ion  P i s  f in i te   except   for   the   po in ts  T and T' a t  which the  tangents 
ti = 0 touch  the  hyperbola c 0 (see  Fig.  3.9).  Fig. 3.10 combines Figs. 

3.7 and 3.9 and s h w s  a complete  plot  of  the  regions i n  which f l u t t e r   o r   d i -  
vergence,  respectively,  may occur or cannot  occur.  Fig. 3.10 can   eas i ly  be 
cons t ruc ted   i f  p = -cy a and v = s2/%l are given. 12 21 

3.2.3 SunoPary of Results 

If  the  loading  parameter P is  increased  or  decreased from i ts  i n i t i a l  
value (which need not be zero),  the  system may e i t h e r  remain s t a b l e ,  or i t  
may l o r e   s t a b i l i t y  by f lut ter   or   divergence.  The r e s u l t s  of the  corresponding 
analysis  are suuunarized in   F ig .  3.11. Fig.  3.12 ind ica t e s   qua l i t a t ive ly   t he  
ranges of s tabi l i ty   for   the  loading  parameter  P for   the  var ious  regions of  the 
system parameters given  in   Fig.  3.11. Since  subst i tut ing -cull f o r  cyll and 

-a22 f o r  aZ2 only  reverses   the  or ientat ion of the P -ax i s ,  the  ranges  of  stabi- 

l i t y   f o r   t h e   r e g i o n s  of  system  parameters  indicated  with a prime are obtained 
by subs t i t u t ing  -P f o r  P. Thus, Figs. 3.11  and  3.12 give a complete  plot   for 
the  ranges of s tab i l i ty   o f   the   sys tem  for   the  case Q 12Q21 O *  

In  many problems t h e   i n i t i a l   v a l u e  of the  force P i s  zero, and  one is  
only   in te res ted   in  how s t a b i l i t y  i s  l o s t   f i r s t   i f  a posi t ive  (or   negat ive)  
force P is  applied and increased.  Fig. 3.13 shows whether s t a b i l i t y  i s  l o s t  
by f lut ter   or   divergence,   respect ively.  
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3.2.4 Special Case cu, = w,, 

If the two natural  frequencies of  the  system  coincide,  the  characteristic 
curve  degenerates  into  two  real or  imaginary  straight lines. The  characteris- 
tic equation (3.23) may then  be  written as 

F [CP + b(b+ & )(5-t0)][cP + (b- $%)(r-so)] = 0 (3.60) 
for  c # O 

F 5 (2bP + 5 - so) (5 - so) 0 for  c = 0 (3.61) 

where 

It is  easily  seen  that  for al2aZ1 > 0 and  for a12a21 = 0 the results  given 
in  Figs. 3.5 and 3.6 hold  if  one  sets 5, = 5,. The results  for al2aZ1 C 0 

are  illustrated  in Fig.  3.14. If  the  system  parameters  fall  into  the  regions 
11, I11 or IV, only  divergence  may  occur. For system  parameters  in  region I, 
flutter will occur  €or  each  nonvanishing  value of P, while  for  system  para- 
meters  corresponding to point Q no  instability will occur for any  value  of P. 
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CHAPTER IV 

DESTABILIZING  EFFECTS 

4.1  Introduction 

It has  been  discovered  by  Ziegler [SI not  quite two decades  ago  that  in- 
ternal  damping  may  have a destabilizing  effect  in  a  nonconservative  elastic 
system.  He  considered  a  double  pendulum  with  viscoelastic  joints  as  a  model 
of  an  elastic  bar  with  internal  damping  and  let  a  tangential  force  act  at  the 
free  end.  The  critical  loading  obtained  in  complete  absence  of  damping  was 
found  to  be  considerably  higher  than  by  including  damping  at  the  outset of 
the  analysis  and  then  letting  the  damping  coefficients  approach  zero  (vanish- 
ing  damping)  in  the  expression  for  the  critical  force. 

This  rather  surprising  and  seemingly  paradoxical  finding  was  ascribed  in 
later  studies  by  Ziegler [6,7] to  the  possibility  that  internal  damping  is  in- 
adequately  represented  by  linear  damping  forces  which  are  linear  combinations 
of  the  generalized  velocities  and  that  the  hysteresis  effect  should  be  taken 
into  account. 

The  destabilizing  effect  of  damping  was  further  elaborated  upon  by  Bolotin 
[8] who  considered  a  general  two-degree-of-freedom  system  not  related  to  any 
particular  mechanical  model  and  who  found  additionally  that  the  destabilizing 
effect  in  the  presence  of  slight  and  vanishing  damping  is  highly  dependent on 
the  relative  magnitude  of  damping  coefficients  in  the  two  degrees  freedom. 

Additional  insight  into  the  destabilizing  effects  of  linear  viscous 
damping in systems  with  follower  forces  may  be  gained  by  not  merely  applying 
stability  criteria  but  by  studying  also  the  roots  of  the  characteristic  equa- 
tion  (cf.  Ref. [25]). Further,  the  results  of  the  mathematical  stability  in- 
vestigations  may  be  interpreted  in  physical  terms  by  introducing  the  concept 
of  degree  of  instability. It becomes  then  possible  to  carry  out  a  gradual 
transition  from  the  case  of  small  damping  to  the  case  of  vanishing  damping 
and  relate  both  of  these  cases  to  that of no  damping. 

4.2 ~- Illustr-ative-  Examples  of  Systems ~ -~ with ~ .. Two ~- Degrees ~ of  Freedom 

4.2.1 A Model 

For this  purpose  again  a  two-degree-of-freedom  model  is  considered,  Fig. 
4.1,  composed  of two rigid  weightless  bars  of  equal  length R, which’carry  con- 
centrated  masses ml = 2m,  m2 = m. The  generalized  coordinates ql,. % are  again 
taken  to  be  small. A load P applied  at  the  free  end  is  assumed  to  be  acting 
at  an  angle Q (pure  follower  force).  At  the  joints  the  restoring  moments 
cq, + bliPl  and “(3-‘4) + b ( *  @ ) are  induced. 2 ‘4- 1 
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The  kinetic  energy T, the  dissipation  'function D, the  potential  energy V, 
and  the  generalized  forces Q1 and Q, are 

Lagrange's  equations  in  the form 

are  employed  to  establish  the  linear  equations  of motion 

which,  upon  stipulating  solutions of the  form 

yield  the  characteristic  equation 

4 3 2 pori + P p  + P2n + p3n + p4 = 0 

with  the  coefficients 

Po 5 2  

p1 = B1 + 6B2 

p2 7 - 2F + B1B2 

P3 = B1 + Bp 

Pq = 1 

(4.5) 
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and the  dimensionless  quantit ies 

In  the  absence of  damping (B1=BZ=O), the   charac te r i s t ic   equa t ion  io a 
biquadratic 

4.2.2 C r i t i c a l  Loads 

From the assumed form  of the time-dependence for   the  coordinates  cp and 
i 

on the   bas i s  of t h e   k i n e t i c   s t a b i l i t y   c r i t e r i o n ,  i t  i s  ev iden t   t ha t   i f  a l l  
four   roots  of the   charac te r i s t ic   equa t ion   a re   d i s t inc t ,   the   necessary  and 
su f f i c i en t   cond i t ions   fo r   s t ab i l i t y   a r e   t ha t   t he   r ea l   roo t s  and the real 
p a r t s  of the complex roots  should be a l l  negative  or  zero.  In  case of equal 
roots   the  general   solut ion of cp w i l l  have  terms which contain powers  of t 

as a fac tor .   I f   the  real  p a r t s  of equal   roots  are negative,  the  system w i l l  
be s table   (vibrat ion  with  decreasing  ampli tude) ,   but   i f   these real parts a r e  
ze ro   o r   pos i t i ve ,   s t ab i l i t y  w i l l  not   exis t   (vibrat ion  with  increasing ampli-  
tude). 

i 

Let us t u rn   ou r   a t t en t ion   f i r s t   t o   t he   ca se  of  an i n i t i a l l y  undamped 
system. The four   roots  of the  biquadratic  equation as a function of F a re  
(a   special   case,  a = 1, of the problem treated  in   Sect ion 3.1) 

"1,2,3,4 = 1, 2 (. p - ($ - J2)]1'2* p - ($ + J2)31'2} (4.9) 

which,  depending on the  values of F, may turn   ou t   to  be pure  imaginary  roots, 
complex roots ,   or   pure  real roots .  The nature of these  four  roots as F var i e s  
is  g raph ica l ly   i l l u s t r a t ed   i n   F ig .  4.2 i n  which the  values of the   roo ts   a re  
given by the   in te rsec t ion   po in ts  of the  root  curves and the  horizontal  plane 
which i s  perpendicular to the  F-axis and passes through  the  given  value of F. 
The i l l u s t r a t i o n s   i n   F i g .  4.2  include a perspective of  the  root  curves, and 
also  the  or thographic   project ions on the real plane (Im n = 0) ,  the  imaginary 
plane (Re n = 0 )  and the complex plane (F = 0 ) .  

It is  found tha t   there  w i l l  always be two roots   wi th   pos i t ive  real p a r t  

i f  F > 5 - ,f2 = 2.086 = Fe.  For F = Fe t he re   ex i s t  two pairs of equal   roots  7 
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whose real parts are a l l  zero. Thus the  system i s  uns tab le   for  F 2 Fe. For 

F < Fe a l l  roo t s  are d i s t i n c t  and pure  imaginary and thus  the  system i s  m a r -  

g ina l ly  s table .  

We consider  next a s l i g h t l y  damped system,  assuming B = B2 = 0.01. No 

simple  expressions  for  the  four  roots of the quartic equat ion  exis t ;   the  
numerical results obta ined   a re   i l lus t ra ted   in   F ig .   4 .3 ,  where a perspective 
view is supplemented by three  project ions of the same three  planes as i n  
Fig. 4.2. Two roo t s  w i l l  have a p o s i t i v e   r e a l  part fo r  F > 1.464 = Fd. 

Stabi l i ty   can  be  invest igated  direct ly   without   determining  the  roots  of 
the   charac te r i s t ic   equa t ion  by applying  the Routh-Hurwitz c r i t e r i a ,  which r e -  
qu i re   tha t  a l l  c o e f f i c i e n t s  p ( j  = 0, ..., 4) of the   charac te r i s t ic   equa t ion  

and the  quant i ty  
j 

2 2 x = P1P2P3 - P0P3 - P I  P4 (4.10) 

be posi t ive.  For pos i t i ve  damping these   s t ab i l i t y   cond i t ions   a r e   s a t i s f i ed ,  
provided 

p2 = 2[- F + - (7+B1B2)] > 0 1 
2 

(4.11) 

4B1 + 33B1B2+  4B2 

2(B1 +7B1B2+6B2 ) 

2 2 

X = 2 (B12+7B1B2+  6B2 2 ) {- F + [ 2 2 + $ B1B2]} > 0 

For  the  system  to be s t a b l e  F must sa t i s fy   the   fo l lowing  two inequa l i t i e s ,  
where = B1/B2, 0 S B < ; 

2 
F <  4 8 + 3 3 8 + 4 . L B B  

2 (p2+7(3+6) 2 1 2  

Since 

48 + 338 + 4 < 2 
2 (P2+78+6) 2 

2 
(4.13) 

for  whatever (3 i n  i ts  range, i t  is evident   tha t   the   c r i t i ca l   load  w i l l  be 
governed by the  second  inequality,  i .e.,  

- 4 8 + 3 3 8 + 4 + L B B  2 - - 
Fd 2 (f12+78 + 6 )  2 1 2  
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which  depends on t h e   r a t i o  as well as the  magnitudes  of  the damping coef f i -  
c ien ts .  

For Bi << 1, as well  as i n   t h e  l i m i t  of vanishing  damping, F becomes 
- 

d 

Fd 
4fj2+ 33@ + 4 

2 (fl2+7B+6) 
(4.15) 

which is  highly  dependent  on @ and i s  in   gene ra l  smaller but   never   larger  
than Fe.  The ra t io  of Fd t o  Fe versus @ is p lo t ted   in   F ig .  4.4. It is  noted 

t h a t  when @ = 4 + 5 J2 = 11.07, Fd/Fe reaches i t s  maximum value 1. The de- 

s t a b i l i z i n g   e f f e c t  is  thus   e l imina ted   in   th i s   par t icu lar  case, similar t o   t h a t  
found by Bolot in  [8]. For B = 0, Fd/Fe reaches i t s  minimum value 0.16; i .e. ,  

the maximum d e s t a b i l i z i n g   e f f e c t  i s  about   84  percent   in   the  present  two- 
degree-of-freedom  system. 

4.2.3  Case of Vanishing Damping 

The two disparate   values   of   the   cr i t ical   load  for   no damping (B = 0 )  and 
i 

vanishing damping (B 4 0 )  j u s t i f y  a more de ta i led   inves t iga t ion  of the   l imit ing 

process   as   the damping coefficients  approach  zero.  
i 

L e t  us examine f i r s t   t he   l imi t ing   p rocess   fo r   t he   roo t s  of the  character-  
i s t i c   equa t ion .  It can  be shown with  the  a id  of the  theory of equations [26] 
t h a t   i f  Bi << 1 and F < 4.914 th is   equa t ion  w i l l  have  four complex roots.   Let 

these  roots  be 

Then one  can wri te  [26] 

p1 

PO 
2(y1+ A1) = - - 

where po, pl, and X are as defined earlier. For  vanishing damping 

(Y1 + hl = 0 

(4.16) 

(4.17) 

(4.18) 
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Hence 

o r  

Thus 

y2 = I 2  
(4.19) 

(4.20) 

and a s u b s t i t u t i o n  of these   four   roo ts   in to   the   charac te r i s t ic   equa t ion  w i l l  
show that   they are the same as in   the  case of  no  damping. 

In  the  case of F 2 4.914, the  four  roots w i l l  a l l  be r e a l   f o r  small B 
Let i' 

(4.21) 

In   the l i m i t  of vanishing damping one can show s i m i l a r l y   t h a t   e i t h e r  u = v = 0 

or  ul=  -vl  and  u2=  v2.  For e i ther   a l te rna t ive ,   subs t i tu t ion   in to   the   charac-  

te r i s t ic   equa t ion   revea ls   tha t   the   roo ts  are the same as in  the  case of no 
damping. 

1 1  

Thus the  conclusion is  reached  that  whatever F the  roots  of  the  charac- 
t e r i s t i c   equa t ion   fo r  no i n i t i a l  damping (B = 0 )  are iden t i ca l   t o   t hose  of 

vanishing damping (B 0).  This  implies  that  the  motions of the  system,  for 

sane g iven   i n i t i a l   cond i t ions ,  and whatever  F, w i l l  be iden t i ca l   i n   t he   ca se  
of no damping (B = 0) and vanishing damping (B 4 0).  

i 

i 

i i 

We focus  a t tent ion  next  on the  loading F i n   t h e  two cases and before 
passing  to   the l i m i t  consider small damping (B << 1). The posi t ive real part 

of the  roots of the   charac te r i s t ic   equa t ion   in   the   range  Fd < F < F for  seve- 

ral  small values of B and, as an  example, B1 = 0 ( i .e . ,  B = 0) have  been ca l -  

culated and the  resul ts   are   displayed  in   Fig.   4 .5 ,  where F is  plot ted as a 
function of R e  Cl for   nine  values  of B This f i g u r e   i l l u s t r a t e s   t h a t   f o r   t h e  2 '  
larger  values of B2, Fd represents   the  cr i t ical   load  because  for  F > Fd some 

roo t s  w i l l  have a nonvanishing  posit ive  real  p a r t .  A small increase of the 
load  above Fd w i l l  r e s u l t   i n  a large  increase of t h i s   r e a l   p a r t .  For small 

values  of B2,  however,  even  though Fd i s  s t i l l  s t r i c t ly   speak ing   t he   c r i t i ca l  

load, i t s  s ignif icance is lessened,  because a small increase of the  load above 

i 

e 

2 
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P w i l l  n o t   r e s u l t  any  longer i n  a large  increase of Re n. Large  increase of 

R e  I) w i l l  now be associated  with small increase of a load  which is s l i g h t l y  
lower  than Fe. For  vanishing damping Re I) = 0 f o r  any F < Fe. We thus con- 

c lude  that   dur ing  the  l ia i t ing  process   the  s ignif icance of F as a c r i t i c a l  

load i s  gradual ly   t ransfer red   to  F and a t  the l i m i t  of  vanishing damping 

(Bi 4 0) Fe has   to  be considered as the   c r i t i ca l   l oad .  It i s  apparent now 

that  this  concluaion  could  only be reached by considering  the  roots of  the 
charac te r i s t ic   equa t ion  and not by merely  applying  the  stabil i ty cri teria of 
Routh-Hurwitz. Fur ther ,   the   reasons   for   the   s tab i l i ty  criteria y ie ld ing   d i f -  
f e r en t   c r i t i ca l   l oads   fo r   no  damping and €or  vanishing damping can  be  better 
understood by having  considered small damping. 

d 

d 

e' 

4.2.4 Degree  of I n s t a b i l i t y  

It was establ ished  in   the  preceding  sect ion  that   for   vanishing damping 
(Bi - 0 )  the  four  roots of the   charac te r i s t ic   equa t ion  become i d e n t i c a l   t o  

those of  no damping (B = 0) wh i l e   t he   s t ab i l i t y   c r i t e r i a   a lone  would i n  gen- 

e ra1   y i e ld   d i spa ra t e   c r i t i ca l   l oads   i n   t hese  two cases. 
i 

To e s t a b l i s h  a further  connection between the  mathematically  derived 
c r i t i c a l   l o a d s   f o r  no damping (B = 0) and vanishing damping (B 4 0)  i t  ap- 

pears he lpfu l   to   in t roduce   in to   the   d i scuss ion  a concept which might be ca l l ed  
"degree of i n s t a b i l i t y "  and which  embodies a r e l axa t ion  of the  concept of i n -  
s t a b i l i t y  as used when app ly ing   t he   k ine t i c   s t ab i l i t y   c r i t e r ion .  According t o  
t h i s   l a t t e r   c r i t e r i o n  a system i s  s t a b l e   i f  a su i t ab le   d i s tu rbance   r e su l t s   i n  
a bounded motion i n   t h e   v i c i n i t y  of the  equilibrium  configuration;  e.g. ,   the 
system is u n s t a b l e   i f  a d is turbance   l eads   to   osc i l la t ions   wi th   increas ing  am- 
p l i tude   ( f lu t t e r   i n s t ab i l i t y ) .   Fo r   t h i s   t ype  of l o s s  of s t a b i l i t y  one can s t a t e  
t ha t  from a prac t ica l   po in t  of view i t  w i l l  ce r ta in ly   mat te r  how fa s t   t he  am-  
pli tudes  increase.  

i i 

For example,  should a s u i t a b l e  i n i t i a l  disturbance be merely  doubled i n  a 
time i n t e r v a l  which i s  large as compared to,   say,  some reference  period,  while 
the  duration of the system being  subjected  to a nonconservative  force is  by 
comparison r e l a t ive ly   sho r t ,   t he  system may be considered  pract ical ly   s table ,  
while,  mathematically,  of  course, one would have to  conclude  that  i t  is  un- 
s t ab le .  

In   o rder   to  weaken t h e   k i n e t i c   s t a b i l i t y   c r i t e r i o n ,  one could  prescribe 
a rb i t r a r i l y  the  allowable  increase of the  disturbance and would then  obtain 
f o r  a given  value of the  load a c r i t i c a l  time, not   unl ike  in   the  case of creep 
buckling. A s  an   a l t e rna t ive ,  one could  introduce  another  measure  of  the rate 
of  amplitude  increase. By analogy  to   decaying  osci l la t ions,  where the  loga- 
r i thmic decrement serves  the  purpose of quant i ta t ive ly   assess ing   the  rate of 
decay, we can  use  the same quan t i ty   a l so  as a measure of the rate of amplitude 
increase.  Thus 

*n 6 = log - 
*n+l 

(4.22) 
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where A is the  amplitude of t h e   o s c i l l a t i o n  a t  a c e r t a i n  time t and A is  

the  amplitude a t  t + T, where T is the  period.  In  the  present problem,  neg- 
lec t ing   the  terms of decaying  magnitude i n  the general   solut ion of cp 6 gene- 

r a l l y  w i l l  be t ime-independent  for  f lutter  motions,   except when the  characte- 
ristic equation  has  equal  pure  imaginary  roots. 

n n+l 

i' 

The k i n e t i c   s t a b i l i t y   c r i t e r i o n   r e q u i r e s  6 2 0 ;  i .e. ,  An 2: An+l. A neg- 

a t i v e  6 properly  could be called  the  logarithmic  increment and i n  a real   system 
i t  i s  conceivable  that  6 may a t t a i n  a cer ta in   va lue  6 i n  a c e r t a i n   i n t e r v a l  

of time without  the  system  losing i ts  s t a b i l i t y   i n  any  pract ical   sense.  
C 

For B = B1/B2 = 1 the   c r i t i ca l   l oad  F is  displayed as a function of 

Bl =I B2 = B in  Figs.   4.6 and 4.7.  For however small but   f ini te   negat ive  value 

of 6 ,  t h e   c r i t i c a l   l o a d  for vanishing damping (B -4 0) w i l l  always  be t h a t   f o r  
no damping (B = 0 ) ,  namely, F . However, t h e   c r i t i c a l  load  for small damping 

(B < 1) may be smaller than F b u t   f o r   f i n i t e  6 ,  however small, i s  always 

larger   than Fd. For  given 6 the  value of (small) damping B which is  associated 

with  the minimum value of t h e   c r i t i c a l  load  can be determined. 

e 

e 

For  vanishing  logarithmic  increment (6 4 0) the  function F(B) approaches 
a l imit ing  curve which w i l l  contain  the  point Fd on the  ordinate.  For 6 = 0 

the   s tab i l i ty   reg ion  is closed; i .e.,  points  on the  curve 8 = 0 in  Fig.  4.7 
are   s table ,   including  the  point  Fd  on the  ordinate.  For B = 0 it  is  the  point 

F which s e p a r a t e s   s t a b i l i t y  from i n s t a b i l i t y ,  b u t  belongs  i tself   to   the  in-  

s tabi l i ty   region.   This   l imit ing  process   provides   thus  addi t ional   insight   into 
the  generation of t he   c r i t i ca l   l oad  Fd. 

e 

4.2.5 A More General Model 

Further   interest ing  types of behavior may be  discussed  if   the  follower 
force i s  generalized by means of the  parameter a as discussed  in  Section  3.1 
without damping. The system  to be analyzed i s  tha t  of Fig.  4.8  (cf.  Ref.  [27]). 
The kinetic  energy T,  the   diss ipat ion  funct ion D and the  potential   energy V 
are   the same as in   Sect ion 4.2.1,  while  the  generalized  forces Q a re   the  same 

as  those in Section 3.1. The associated  equations of motion  are 
i 

which, upon s t ipu la t ing   so lu t ions  of the form  (4.4) y i e ld   t he   cha rac t e r i s t i c  
equation 

Po" + PI" + P2n + P3c1 + P4 = 0 
4 3 2 (4.24) 
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with the  coefficients 

(4.25) 

4.2.6 Root-Domains  of  Characteristic  Equation 

It was found  that  small  damping  rather  than  vanishing or large  damping 
is the  cause  of  the  destabilizing  effect, and thus only  small  damping (B << 1) 
will be  considered in the  sequel. i 

Let  us  introduce  first  the  following  quantities: 

1 1 2  
1 = P0P4 - 3 PIP3 + 12 P2 

12 [4(cr2-10Q"l0)F2 + 4(25cu-32)F + 731 

1  1  1 2 1  2 1 3  a pop2p4 + 48 '1'2'3 - 16 '0'3 - 16 '1 p4 216 p2 
- -  

- 1  3 2  3 

- (348a2-1464~1032)F2 
- - [ (8a " 9 6 ~  -336d224)F 2 16 

- (1362~~-1212)F - 1611 (4.26) 
cont. 
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K = p t I  - 12H2 

= - 4[(~r -1)~  + 13 { F - 1 

2C(a-1)2+11 

x {(8-a) + 6.325 [- (a-0.345)(rrl.305)]1'2~} 

1 
x - 2[(cr-1)2+1] 

{(8-a) - 6.325 [- ( 1 ~ - 0 . 3 4 5 ) ( ~ ~ - 1 . 3 0 5 ) ] ] " ~ }  

+ (1-a) (82+88+12)B1B2] F + [4B2+ 338 + 4 + (8 2 +7p+6)B1B2]] 

B {(l-a)[@ + 128 + 4 - 8a(@+2)]  F2 2 
2 

- 2[B2 + 78 + 6 + (1-a)(@2+11B-10)] F + (48 +338"4) 3 2 (4.26) 

where po , . . . ,p4 and other  symbols  have  been  defined  previously. 

It i s  known from the  theory of equations [26] that :  

(a) When A C 0 ,  the   charac te r i s t ic   equa t ion   has  two real and two complex 
roots.  

(b) When A > 0 and both H and K are negat ive,   the   four   roots  are a l l  real. 

(c) When A > 0 and a t  least one of H and K i s  pos i t i ve  or zero,   the  four 
r o o t s  are a l l  complex. 

These c r i t e r i a   l e a d   t o   t h e   d i f f e r e n t   r o o t  domains shown i n  Fig. 4.9. 
The domain marked by crosses   ind ica tes   the   ex is tence  of four  real roots ;   tha t  
marked by dots   corresponds  to  two real and two complex roots ;  and tha t  marked 
by horizontal   dashes  or  by d iagonal   l ines   ind ica tes   the   ex is tence  of four com- 
plex  roots.  The more de ta i led   na ture  of the   roo ts  and the   r e l a t ed   s t ab le  and 
unstable  behavior  of  the  system may be  deduced  from the  following. 

Domain A > 0, H < 0 ,  K e 0 

This domain is marked by crosses i n  Fig. 4 . 9 .  I n  it, p,, pl,  and p are 4 
always  posit ive;  p2 i s  always negative.  Applying  the well-known Descartes' 
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ru le   o f  signs, regard less  of the sign of p3, it is seen  that  in t h i s  domain 

the four  real roots   o f   the   charac te r i s t ic   equa t ion  art  always pa i r6  of two 
pos i t i ve  a d  two negative ones.  Consequently, t h i s  is throughout a region 
of i n s t a b i l i t y  by divergent  motion. 

Domains A < 0 

These  domains are marked by do t s  i n  Fig. 4.9. kt the  two r e a l  and two 
complex roo t s  in these domains  be represented by 

P 1  f i Q 2  
(4.27) 

r1 * 
From t h e   r e l a t i o n s  between roo t s  and coe f f i c i en t s  in the  theory of equations 
[ 2 6 ]  and the  def ini t ion  of   the  expression X i n  t he  Routh-Hurwitz c r i t e r ion ,  
the  following  relationships  hold: 

2(p1+r1) - p1 = - (B1+6B2) C 0 
PO 2 

(4.28) 

As p4 is always  negative in  these  three domains, t he   t h i rd  of the  foregoing 

equat ions   ind ica tes   tha t  

2 2 
r2 > r1 (4.29) 

which, i n  turn,  shows tha t   t he  two r e a l   r o o t s  are of opposite  sign. Bence 
these  three domains are a lso   reg ions  of i n s t a b i l i t y .  Again, r e c a l l i n g   t h a t  

< 0, i t  is seen  from  the  foregoing  four  equations that the  real p a r t  of 

the  conjugate complex roots  w i l l  be nega t ive   i f  X > 0 o r   i f  X < 0 and p3 < 0, 

but w i l l  be   pos i t i ve   i f  X < 0 and p3 > 0. Whence it follows  that   divergent 

motion w i l l  p r eva i l  i n  th i s   reg ion ,  of the  type a8 sketched i n  Fig. 4.10(a) 
i f  X > 0 o r   i f  X < 0 and p3 < 0, o r  as i n  F i g .  4.10(b) i f  X < 0 and p3 > 0. 
It is noted  that,  if  the  system is undamped (B1 = 0), p1 and rl w i l l  vanish 

ident ica l ly .  The  undamped system w i l l  therefore  undergo  divergent  motion of 

p4 
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the  type as sketched in Fig .  4.10(c). By def in i t ion ,  in a l l  these cases, the 
system i s  unstable. 

Domain K > 0 

This domain is  marked  by horizontal   dashes in Fig. 4.9. Let us  denote 
the  four complex r o o t s   i n   t h i s  domain  by 

Then, as before ,   the   fol lowing  re la t ionships  are obtained: 

2(y +6 ) = - -  = - 1 1  p1 (B1+6B2) < 0 
PO 2 

(4.30) 

(4.31) 

which ind ica te   tha t  y1 and 61 ( the real par ts   of   the  two pairs  of  conjugate 

complex roots)  both w i l l  be  negative i f  X > 0 but of oppos i t e   s ign   i f  X < 0. 

Now, wi th in   t h i s  domain, we have 

K = 8p4 - p22 > 0 

o r  

p4 ’ 7i p2 
1 2  

(4.32) 

(4.33) 

which, i n   t u rn ,   l eads   t o  

x - 5 (4P3 - PIP21 0 
1 2 

(4.34) 

Therefore,  the real p a r t s  of the two p a i r s  of  conjugate complex roo t s  are of 
opposite  sign. The nature  of these   four   roo ts   ind ica tes   tha t   in   th i s  domain 
the  system w i l l  f l u t t e r .  

Domain A > 0, H > 0, K < 0 

This domain is  marked  by diagonal   l ines   in   Fig.  4.9. As the   four   roots  
are a l l  complex, the  s igns of the real p a r t s  of the   roo ts  w i l l  a l so  be  governed 
by the  s igns of X as asser ted  in   the  foregoing.  Thus the  system w i l l  v ib ra t e  
with  decreasing  ampli tude  (asymptot ic   s tabi l i ty)   i f   the   values  of Q and F are 
i n   t h o s e   p a r t s  of t h i s  domain  where X > 0. However, the  system w i l l  f l u t t e r  
i f   t he   va lues  of CY and  F are i n   t h o s e   p a r t s  where X < 0. 
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Further   separat ion of s t a b i l i t y  from i n s t a b i l i t y   i n   t h e   p r e s e n t  domain 
is governed so le ly  by the   s ign  of X. This is  i l l u s t r a t e d   f o r   t h e   f o u r  cases 
of $ = 0, 1, 11.071, and a, aa shown i n  Figs. 4.11, 4.12, 4.13, and 4.14, vhere 
the  regions shaded by diagonal   l ines  are regions of s t ab i l i t y ;   t hose  shaded by 
horizontal   dashes are regions of f lu t t e r ;   t hose  shaded by small triangles are 
regions of divergent  motion  of  the  type shown i n  Fig.  4.10(a);  those  shaded by 
do t s  are regions of divergent  motion  of  the type shown i n  Fig. 4.10(b);  and 
those  shaded by crosses  are regions of divergent  motion i n  which the time in- 
crease of  the  generalized  coordinates is  of  the  exponential  type. 

It is  t o  be  noted tha t ,   i n   t he   p re sen t  domain (A > 0, R > 0, and K < 0), 
i f   t h e  damping ef fec ts   vanish ,   the   four  complex roo t s  of t he   cha rac t e r i s t i c  
equation w i l l  a l l  be pure  imaginary and d i s t i n c t .  Thus the undamped system 
executes   s teady-state   vibrat ions and is  marginally  stable  throughout  the domain, 
as found i n  [22]. 

4.2.7 Nature  of  Boundaries  Separating  Different Root Domains 

In  this   sect ion,   the   boundaries   given by X = 0, p4 = 0, and K 0 w i l l  be 
examined. For  the  sake of convenience,  the term “boundaries  given by X = 0” 
w i l l  be r e s t r i c t e d   t o  mean only  those par ts  of the  curves  given by X = 0 vhich 
l i e  i n   t h e  domain A > 0, H > 0, and K < 0. 

Boundaries X(a,F,@) = 0 

On these  boundaries ,   the   character is t ic   equat ion  has ,  by d e f i n i t i o n  of X, 
two roo t s   equa l   i n  magnitude  but  opposite i n   s i g n .  These two roo t s  are 

p 1/2 
4 , 2  = t- (4.35) 

where p1 is  
p4 = 0, and 

(Y 

F 

Further,  as 

p o s i t i v e   f o r   p o s i t i v e  damping. It i s  found that  the  curves pg = 0, 

X = 0 have a common point  of i n t e r s e c t i o n  which is  given by 

= , B  2 + 3 8 + 1  

2B2 + 58 + 2 
(4.36) 

P3 = 0 and X = 0 have only  one  point of i n t e r s e c t i o n   a t  (a f ,  F 
on p4 = 0, i t  i s  evident  that,  along  the  boundaries  given by X = 0, p3 i s  

always  positive.  This  can be seen from Figs.  4.11, 4.12, 4.13 and 4.14. 
Consequently, n are two dis t inct   pure . imaginary  roots .  The sum of the 

other  two conjugate complex roo t s  is -p /p = - - vhich is  negative  (for 
pos i t i ve  damping). Hence, along  the  boundaries  given by X = 0, the  charac- 
teristic equation  has two pure  imaginary  roots  equal  in magnitude  but  opposite 
i n   s i g n  and two conjugate complex roots   with  negat ive real p a r t .  Thus the 

1,2 
1 0  2 p1, 
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system w i l l  execute   s teady-state   vibrat ions as a r e su l t   o f  some i n i t i a l   d i s -  
turbance. It is o n l y   i n   t h i s  case tha t   t he  damped, nonconservative  system  can 
undergo  euch  motions. 

Point  of In t e r sec t ion  of X = 0,  pg 0,  p4 = 0 

A t  t h i s   c o m n   i n t e r s e c t i o n   p o i n t   d e n o t e d  by (a', F '), t he   cha rac t e r i s t i c  
equation has two zero  roots.  The other  tvo  roots,   being  given by 

(4.37) 

are two conjugate complex roots   with  negat ive real pa r t .  The  two zero   roo ts  
w i l l  induce two terms of the  form c1 + c2t i n   t h e   g e n e r a l   s o l u t i o n  of vi. 
Thus the  system w i l l  execute  divergent  motion  in which the increase of 'pi is  

l inear   wi th   respec t   to  time. This  point (a', F ') is  the  only  one a t  which the 
s t a b i l i t y   r e g i o n   f o r   t h e  damped, nonconservative  system is open. 

Po in t s  of I n t e r s e c t i o n  of p4 = 0 ,  X = 0 ,  s = o 

L e t  us introduce  the  quantity 

s = PIP2 - P0P3 (4.38) 

such  that  

x = P3S - P1  Pq 
2 (4.39) 

It can  be shown that   the   curves  p4 = 0, S = 0, and X = 0 have two points   of  

common intersection,  denoted by (a", F") and (CY", F"), where 

F'* P -- 
2 (B+10-4~~ 

(4.40) 

These two points   usual ly   exis t  when B i s  f in i te ,   bu t   the   po in t  (cym, F") ap- 
proaches  inf ini ty  as B + m. A t  the  point  (CY", F"), the   character  s t ic  equa- 
t ion  has  one zero  root,  one pos i t i ve  real root   equal   to  (-p3/pO)'j2, and two 

negative real r o o t s   e q u a l   t o   - ( - ~ ~ / p , ) l ' ~  and -pl/po; therefore,  the  system 

w i l l  execute  divergent  motions. A t  the   point  (a'", F"), the   four   roots  are 
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one  zero  root, two pure  imaginary  roots  equal  to * (-p /p )'I2, a d  one  nega- 

t i v e  real root   equal   to  -pl/po;  hence, a f t e r   t h e   i n i t i a l   d i s t u r b a n c e ,   t h e  

system w i l l  execute   s teady-state   vibrat ions  about  a ce r t a in   pos i t i on   uh ich  in 
general  is  not   the   pos i t ion  whose s t a b i l i t y  is being  studied. 

Boundaries p4 = 0, Excluding  Points (cyt, F '), (a#, F"), and (cyc, FY) 

3 1  

Along these  boundaries,   the  characterist ic  equation  has  one  zero  root and 
three  other   roots   given by 

3 2 
p0n + P p  + p2n + pg = o (4.41) 

where, by the  theory  of  equations and f o r  small damping (Bi C< l), the   t h ree  

roo t s  a l l  w i l l  be real i f  p2 c 0, but  one real and two complex i f  p2 2 0. In 

the  range  of  ei ther F < F' o r  a > a" along p4 = 0 ,  the   four   roo ts  are found 

t o  be  one zero  root,  one  negative real root,  and two conjugate complex r o o t s  
with  negative real par t .  The nature of t hese   fou r   roo t s   i nd ica t e s   t ha t ,   a f t e r  
t he   i n i t i a l   d i s tu rbance ,   t he   sys t em may execute   t rans ien t   v ibra t ions  and then 
come t o  rest a t  a pos i t i on  which in   gene ra l  is  not   the  posi t ion whose s t a b i -  
l i t y  i s  being  studied.  This phenomenon can be interpreted as a s t a b i l i z i n g  
e f f e c t  of viscous damping because  the same system  with no damping would execute 
divergent motion. 

The curves p = 0 (i.e., €I = 0), p4 = 0 ,  and K = 0 have two common in- 

t e rsec t ion   po in ts  a t  (0.423, 2.219) and (1.182,  4.281). In   t he   r ange  of 
F' < F s 2.2.9 along p4 = 0, the   four   roo ts  are one  zero  root,  one  positive 

real root,  and two conjugate complex roots   with  negat ive real p a r t .   I n   t h e  
range 2.219 c F < 3 along p4 = 0, t he   fou r   roo t s  are one zero  root,  one posi-  

t i v e  real root,  and two negative real roots.  Thus, in   the   range  of F t< F < 3 
along p4 = 0, the  system w i l l  execute  divergent  motions. 

2 

In  the  range F M  < F 4.281 along p4 = 0, the   four   roo ts  are one  zero 

root,  one  negative real root ,  and two conjugate complex roots   wi th   pos i t ive  
real pa r t ;  and t h u s   f l u t t e r  w i l l  occur.  In  the  range F > 4.281 along p4 = 0, 
the   four   roo ts  are one zero  root,  one  negative real root,  and two pos i t i ve  
real roots;  hence the  system w i l l  undergo divergent  motions. 

Boundary K = 8p4 - p22 = 0 

The exact curve  of K = 0 i s  

(4.42) 
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As B. and,  hence, p1 and p3 are assumed small, of the   o rder  of 10 , the  last 
three terms in   pa ren theses  are higher-order terms and may be  neglected. Thus 

-3 
1 

K 8p4 - p2 2 , _ 0  (4e43) 

is  a boundary curve which i s  c l o s e   t o   t h e  exact curve K = 0. Subst i tut ing 
1 p22 f o r  p i n  X, w e  have 

x f" 
1 

4 

8 (P1P2'4P3) 
2 (4 044) 

which  indicates that the  system t r i l l  be  unstable when cy and F are on the  
boundary curve given by K = 8p4 - pZ2 = 0, except a t  the  point  where X vanishes 

anr! pg is pos i t ive   ( s teady-s ta te   v ibra t ions) .  The i n s t a b i l i t y  mechanism, on 

t he  whole, w i l l  be  of the   f lu t te r   type ,   except  a t  the   po in ts  where the exact 
espressions  of IC and H are a l l  negative  (divergence). 

4.2.8 Influence  of Damping Ratio on I n s t a b i l i t y  Mechanisms 

In   the   p receding   sec t ions ,  it was e s t a b l i s h e d   t h a t   s t a b i l i t y  is  poss ib le  
only i n   t h e   r e g i o n  (A > 0, H > 0, and K < 0), which is marked by diagonal 
l i n e s   i n   F i g .  4.9. I n  this region,   the   s ign of  X governs the type of motion, 
i.e., the  system is  s t a b l e  i f  X 2 0 and unstable  i f  X < 0. 

Critical loads  for   divergence,   i f  any, are given by  p4 = 0; i.e., they 
are 

(4.45) 

On the   o ther  hand, critical l o a d s   f o r   f l u t t e r ,   i f  any, are always  given by 
X = 0, L e e ,  they are 

where 1 # cy # cyoa and 

The two vertical l i n e s  cy = 1 and LY 

of X = 0. For cy = 1, the  cri t ical  

= 4e2 + 338 + 4 
Ff l u  ( F l  

2(B2+ 78 +6) 
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(4.47) 

= cyo (Figs. 4.11 t o  4.14) are asymptotes 

load is  given by 

(4.48) 



which aas   s tud ied   i n   Sec t .  4,2,2, For cy = aOp t he  cr i t ical  load f o r   f l u t t e r ,  
i f  ~RY, becomes 

(4 -49) 

The curves  of cr i t ical  loads   for  B = 0, 1, 11.071, and Q) are i l l u s t r a t e d   i n  
Figs ,  4.11, 4,12, 4.13, and 4.14. 

For cy = 0 (conservatiwe case) i n  Fig. 4.11, the   po in t  (0, -l), which is 
an   i n t e r sec t ion   po in t  of m o  branches  of  the  curves  given by X = 0, i s  itself 
on t he  boundary given by X = 0; therefore ,   th is   point   corresponds  to   s teady-  
state v ib ra t ions  of the  system. The poin t  (0, -1) i s  thus also a poin t  re- 
p r e s e n t i n g   s t a b i l i t y   r a t h e r   t h a n  a point  which  indicates an i so l a t ed  cr i t ical  
load for   the  conservat ive  system (a, = 0) wi th  damping. However, depending on 
t h e   r a t i o  of damping coe f f i c i en t s ,  a nonconservative  system (a, B 0) may have 
mul t ip le  cr i t ical  l o a d s   f o r   f l u t t e r ,  i n  addi t ion   to   those   for   d ivergence ,  a t  
t h e  same value of a anywhere i n  the  range cy 5 0, except   for  519 < a, s 1 where 
cr i t ical  l o a d s   f o r   f l u t t e r   o n l y  w i l l  occur,  Fig. 4.11 i l l u s t r a t e s   t h a t ,   f o r  

0, f l u t t e r  will occur   for  any CY, except cy = 0, while  Fig,  4,12 shows t h a t  
the  smallest range  of Q i n  which f l u t t e r  is  poss ib le  becomes minimum 
(519 < o! < 1.305) when the  damping coe f f i c i en t s   a r e   i den t i ca l  (Lee, 8 = l), 

It was found i n  Sect. 3.1 that   the  presence  or  absence  of  neighboring 
equi l ibr ium  posi t ions was strongly  influenced by the  behavior  of  the noncon- 
sewative loading and also by the   cons t r a in t s   o f   t he  system. A fu r the r  re- 
s u l t  of t h i s   s t u d y  is t h a t   t h e   r a t i o  o€ the damping coe f f i c i en t s  may exert an 
analogous  influence and may thus  render   the static c r i t e r ion   i napp l i cab le   fo r  
systems i n  which,  without damping, t he  cri t ical  load  could  be  determined sta- 
t ical ly ,   For   instance,  i t  i s  seen   t ha t ,   i n   t he   r ange  1/2 < CY < 519, t h e  sta- 
t i c  s t a b i l i t y   c r i t e r i o n  i s  a p p l i c a b l e   i f  8 = 03 (see Fig,  4.14) but   breaks 
down i f  p = 0 (see Fig, 4.11) , 

Simi lar ly   to   appl icabi l i ty ,   the   suf f ic iency   of   the  static s t a b i l i t y  
Criterion  ( in  the  sense  of  supplying a l l  critical loads)  also  depends on t h e  
r a t i o  of damping Coefficients.  To exemplify  this  feature, l e t  us  examine 
again  Figs,  4.11 sand 4.14. I n   t h e   r a n g e  cy < 1/2, we n o t e   t h a t   t h e  s ta t ic  
s t a b i l f t y   c r i t e r i o n  is  s u f f i c i e n t  i f  p = Q) bu t   p roves   t o   be   i n su f f i c i en t   i f  
$ = 0. The equation p = 0 expresses, i n  fact, t h e  static s t a b i l i t y  cri- 
ter ion,  ioe., the   condi t ion  of t he  static equilibrium of the  system i n   t h e  
v i c in i ty   o f  i t s  neutral   configurat ion.  n u s   t h e  static s t a b i l i t y   c r i t e r i o n  
is implied i n  t h e   k i n e t i c   s t a b i l i t y   c r i t e r i o n ,   w h i c h  is usua l ly   su f f i c i en t  i n  
determining a l l  critical loads for the  nonconservative  system. 

4 

It i n  poss ib l e   t o   i den t i fy   t he   r ange  of a, i n  which f l u t t e r  cannot  occur, 
and thus   the   appl ica t ion  of t h e   k i n e t i c   c r i t e r i o n  is not   required,  Eowever, 
t h i s   r ange  will depend on t h e   r a t i o  of t h e  damping coef f ic ien ts .  To determine 
this range, we consider the expression Ffla d e r i v e d   i n   t h i s   s e c t i o n ,   F l u t t e r  

cannot  occur if the   quant i ty  (p - 228 + 1) CY + 3 3 8 ~  - 9p appearing  under  the 2 2 
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square  root in that   expression is  negative, Thus f l u t t e r  may occur i n   t h e  
following  ranges: 

cy2a1 and C Y S C Y  i f   $ > a ,   o r $ < a  2  2 (4 50) 

or 

cy >cr>a2 i f  al > $ >a2  1 (4.51) 

where 

and 

(4.52) 

(4.53) 

I f  $ = al or $ = a20 the  range i n  which t h e   k i n e t i c   s t a b i l i t y   c r i t e r i o n  must 
be  considered w i l l  be only CY 2 3/11, Consequently, i f   t h e r e  exists any range 
of CY which i s  outside  the  foregoing  specified  ranges,  the static s t a b i l i t y  
c r i t e r ion   a lone  w i l l  be suf f ic ien t   to   de te rmine  a l l  t h e   c r i t i c a l  loads, de- 
spite  the  nonconservativeness  of  the  loading, However, according  to  the  pre- 
ceding  sect ion,   i f  cy < a' or cy > CY", the  static s t a b i l i t y   c r i t e r i o n   d e f i n i -  
t e l y  w i l l  be appl icable   but   not   necessar i ly   suff ic ient   in   determining a l l  
c r i t i c a l  loads. 

4.2.9 Poss ib i l i t y  of Elimination of Destabi l iz ing  Effects  

Critical l o a d s   f o r   f l u t t e r   i n   t h e  undamped system  analyzed i n  Sect. 3,1 
are given by the  equation K(a9 F, Bi) = 0 with  the terms due t o  small damping 

neglected; Le., by the  equation 

K(cY,~?) = - [ 4 ( ~  -2act-2)F + 4 ( ~ - 8 ) F  + 411 0 
2 2 (4 0 54) 

Critical loads f o r   f l u t t e r   i n   t h e  damped system  analyzed  here are given by 

X(abF9B) = 0 (4.55) 

whose l o c i   c o n s t i t u t e ,   i n   f a c t ,  a family of curves   in   the  a - F plane  with $ 
as the   parametr ic   constant .   Different   curves  of t h e   c r i t i c a l   l o a d   f o r   f l u t t e r  
will be obta ined   i f   d i f fe ren t   va lues  are assigned  to B i n  X(cu,F,B) = 0.  

To s tudy   the   in te r re la t ion  between the  curves of critical loads  given by 
#(a,F) = 0 and  X(a,F,p) = 0 ,  l e t  us examine the   ewelope of the  family of 
curves  defined by X(a,F,B) = 0.  It is known that, i f  an  envelope  exists, i t  
must s a t i s f y  

X(ar,F,B) = 0 (4.56) 
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a d  

(4.57) 

Elimination  of p i n   t h e s e  two equat ions  yields  

(F-2)[ ( ~ - c Y ) F - ~ ] [ ~ ( ~ - c Y ) F - ~ ] ~ - K ( c Y , F )  = 0 (4.58) 

where K(cu,F) is as defined  before. However, t h i s   equa t ion  may contain some 
curves which are other  than  the  envelope.  Deleting  these,   the  true  envelope 
is found as given by 

[(l-a)F - 23 K(cY,F) = 0 (4.59) 

Thus the   curve   for  critical f l u t t e r   l o a d s  of the  system  with no  damping is a 
branch  of  the  envelope  of  the  family  of  curves  of  the cr i t ical  f l u t t e r   l o a d s  
of t he  same system  with damping. This remarkable  relation shows a s ign i f i can t  
connection  between  the two governing  equations  of  the cri t ical  loads  for  
f l u t t e r  of t he  undamped and the damped systems. 

In  consequence  of the  foregoing  re la t ion,  i t  appears   possible   to  elimi- 
na te   t he   des t ab i l i z ing   e f f ec t  of damping on  the cr i t ical  l o a d s   f o r   f l u t t e r   i n  
the  damped system i f  we choose  the  value  of  which  defines a curve of the  
family X(a,F,p) = 0 tangent   to  K(a,F) = 0 (the  envelope) a t  the  given  value 
of a. Eliminating F i n  X(a,F,p) = 0 and  (a/ap)X(cr,F,p) = 0 ,  w e  f i n d   t h a t  
th i s   va lue  of B is given by the   pos i t ive ,  real roo t  of t he   qu in t i c  

 CY - 3 ) ( 7 ~ ~  - 3)(4a - 3)B - ( 8 9 6 ~ ~  - 5 , 9 3 6 ~ ~  + 8 , 1 9 6 ~ ~  

4  4 3 2 

5 4 3 2 

- 3 , 8 7 0 ~ ~  + 594)B - (12 ,800~~  - 6 0 , 9 2 8 ~ ~  + 8 2 , 6 8 0 ~ ~  

- 3 8 , 6 6 4 ~ ~  + 5832)B3- (80 ,128~~  - 365 ,280~  + 502 ,416~~  

- 234,576~~ + 34,992)p2- (353,280~~ - 1,480,320~~ 

+ 1,925,856~~ - 874 ,800~~  + 128,304)p - (838 ,656~~ 

4 3 2 

4 3 

2 4 

- 2,941,056~~ + 3,411,072~~ - 1,469,664~~ + 209,952) = 0 3 2 (4.60) 

and t h e   c r i t i c a l  l o a d   f o r   f l u t t e r   i n   t h i s  case is given by 

which w i l l  be i d e n t i c a l   t o   t h e  cr i t ical  l o a d s   f o r   f l u t t e r  of the  same system 
wi th  no damping. 

For example, i f   t he   e l imina t ion  of t h e   d e s t a b i l i z i n g   e f f e c t  of  damping 
f o r   t h e  case CY - 1 is desired,  B must  be equal   to   the   pos i t ive ,  real roo t  of 
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t he   qu in t i c  

$5 + 6B4 - 86B3 - 884$2 - 26128 - 2448 = 0 

i.e., 

$ = 4 + 5 J2 = 11.071 

which, together  with CY = 1, y i e l d s  

F =C 5 - J2 = 2.086 7 

(4.62) 

(4.63) 

(4.64) 

The c r i t i ca l  load  for  CY = 1 i n   t h e  undamped system  determined i n  [5,22,25] 
is iden t i ca l   t o   t he   va lue  we obtained in   the  foregoing.  The complete elimi- 
nat ion of t h e   d e s t a b i l i z i n g   e f f e c t   f o r   t h i s  case i s  thus  a t ta ined,  as i s  il- 
lus t r a t ed   i n   F ig .  4.13. For Q = 314, a similar procedure w i l l  show tha t   t he  
d e s t a b i l i z i n g   e f f e c t  is  completely removed when B = m. This is i l l u s t r a t e d  i n  
Fig. 4.14. 

The p o s s i b i l i t y  of a complete  elimination of t he   des t ab i l i z ing   e f f ec t   de -  
pends  on the  exis tence  of  a posi t ive,  real root   in   the   foregoing   qu in t ic .  The 
range  of CY where the  e l iminat ion of t h e   d e s t a b i l i z i n g   e f f e c t  is o f   i n t e r e s t   t o  
us is, of course, 0.423 i a 5 1.305. However, i t  is found t h a t   i n   t h e   r a n g e  

317 < CY < 314 (4.65) 

the   qu in t ic   has  no posi t ive,  real root.  Thus, i n   t h i s  range,  the  system w i l l  
always  experience some des tab i l iza t ion   for   whatever   va lue  of 8 i n  i t s  range 
O r f 3 s m .  

For  instance, l e t  us consider  the case CY = 0.6,  where the cr i t ical  load 
for  the  system  with no damping is 

Fe = - 58 (37 - 6 J5) = 2.033 

while  the cr i t ical  load  for  the  system  with damping is given by 

Fd 
E 1.48~+ 11.48 + 2 - t8+6)ro.36e2+  2,888 + 0 . 3 6 1 ~ 1 ~  

(3.28 + 6.4)(a0- 0.6) 

where 

2+ 128 -t 4 
CYo '8(B + 2 )  

(4.66) 

(4.67) 

(4.68) 

The r a t i o  of Fd t o  Fe versus B i s  p l o t t e d   i n   F i g .  4.15. It is  noted  that   the  

value of  Fd/Fe  increases as f3 increases and approaches  29/5(37-6 J5) = 0.984, 

instead of 1, as the  upper limit when B approaches  inf ini ty;  i.e., the  desta-  
b i l i z i n g   e f f e c t  of damping i s  a t  least 1.6 percent   i f   the   va lue  of CY i s  kept 
a t  0.6. 
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I n  the  range 1.182 < a < 1.305, the undamped system  has  multiple cri t ical  
l o a d s   f o r   f l u t t e r   g i v e n  by K(cy,F) = 0.  However, an   inves t iga t ion   of   the   roo ts  
of t he   qu in t i c  shows t h a t ,   f o r  any cy i n   t he   r ange  1.182 s a 5 1.285, t he re  is 
only  one  posi t ive,  real roo t  which def ines  a curve  of  the  family X(a,F,@) = 0 
t angent   to   the  lower p a r t  of K(cy,F) = 0. Thus, i n   t h e   r a n g e  1.182 5 cy 5 1.285, 
the damped system has no crit ical  load  which is given by the upper p a r t  of 
K(a,F) = 0. 

As an   a l t e rna t ive ,   t he   poss ib i l i t y  of e l imina t ing   the   e f fec ts  of damping 
could  also  be  studied by equat ing   the   f requencies   f i r s t  and then  the cri t ical  
forces,  obtained  with and without damping. The frequency  of  the undamped 
system i s  given by 

I m  n = $ [7 - 2(2-cy)F] 1/2 

while  the  frequency  of  the  system  with damping is given by 

'I2 (B1+B2) - (l-cy)(B1+2BZ)F 1/2 

B1 + 6B2 1 
Equating  the two expressions and el iminat ing  F  in  K(cy,F) = 0 leads  to  

28 (a - $)(a - i) B2+ 4(16ar2- 33a + 9)B + 4(182a2-  2970 + 81) = 0 

(4.69) 

(4.70) 

(4.71) 

which, in   tu rn ,   g ives   the   range  of Eq. (4.65) i n  which elimination of the 
damping e f f e c t  i s  not   poss ib le   for   pos i t ive  damping. 

Fig. 4.16 i l l u s t r a t e s   t h e   f u n c t i o n  @(cy) which insures  elimination of 
damping effects.  For  completeness,  the  required  values of negative e i n  
the  range 3/7 < a < 3/4 have a l s o  been indicated.  

4.3  Damping and Gyroscopic  Forces i n  Systems with Two Degrees of Freedom 

The j o i n t   e f f e c t s  of follower  forces,   l inear  viscous damping,  and gyro- 
scopic  forces (i.e., velocity-dependent  forces which  do no work) have  been 
s t u d i e d   i n  Ref. [28]. Considered was the  system  with two degrees  of  freedom 

(4.72) 

The matrices a and b  can  be  resolved  uniquely  into a syrmetrical and a n t i -  
symmetrical par t :  

i j  i j  

(4.73) 
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where 

a72 = a* 2 1  = (a12+a21)/2,  P = (a12-a21)/2 

and rl1 b 1 j =  t" y+rw ;} 
b21 b22 b;l b22 

where 

b:2 = b:l = @12+b21)/2, U) = (b12-bz1)/2 

By a suitable  transformation  of  the form 

(4.74) 

(4.75) 

(4.76) 

(4.77) 

i t  i s  p o s s i b l e   t o  make e i t h e r  a;2 o r  b* to  vanish.  Choosing  the f i r s t  pos- 

s i b i l i t y  and wr i t ing   aga in  ql, q2, b12 ... f o r  q1, q2, bT2, the  following 

sys tem of  equations ie obtained: 

12 

(4.78) 

The system  has a potent ia l   energy  funct ion (is noncirculatory) if p = 0 ,  i t  
is  pure ly   c i rcu la tory   for  all=  a22= 0, i t  i s  nongyroscopic  for w = 0 ,  and is 

undamped i f  bll= b12= bZ2= 0. 

Solutions are sought i n   t he  form 

which  lead t o  the charac te r i s t ic   equa t ion  

4 + c 1 3 + c2A 2 + c3x + c4 = 0 
coA 1 

where 

(4.79) 

(4.80) 

c = 1  

c = b  

0 

1 11 + b22 (4.81) 
cont . 
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c2 = a 11 + a22 + (bllb12' bl;) + w 

c3 = allb22 + a b + 2pw 

2 

22 11 
2 

c4 = alla22 + 

(4.81) 

For s t a b i l i t y  It i s  required  that  ci 2 0 (i = 1,2,3,4) and t h a t  i n  addi t ion 

x = C1C2C3 - c c - c1 c4 > 0 2 2 
0 3  (4.82) 

If cl= c = 0 th i s   addi t iona l   condi t ion   t akes  on the form 3 

c2 - 4c0c4 > 0 (4.83) 

It i s  t o  be noted   tha t   i f  c = 0 but c # 0 (or cl# 0 but c3= 0) t h e   f i r s t   i n -  1 3 
equality  cannot 
gardless of the 

Let us  now 

coe f f i c i en t s   c i  

be s a t i s f i e d  and thus  the  equilibrium i s  always  unstable re- 
actual   values  of the  nonvanishing c 

examine the  special   case of an undamped system, bi,= 0 .  The 

are   then 

i' 

2 2 c1 = 0 ,  c2 = all + a22 + tu , c3 = Zpw, c4 = alla22 + P 

(4.84) 

Since c = 0 and c # 0 the  system is  unstable   regardless  how small the 

follower  (circulatory)  forces and the  gyroscopic  forces  are.  
1 3 

Another special   case of i n t e r e s t   i n  which exp l i c i t   r e su l t s   can  be ob- 
tained i s  

all = aZ2 = a > 0, bll = b22 = b > 0 ,  b12 = O (4.85) 

Then we have 

cl=  2b,  c2= 2a + b + u) , c3= 2 (ab+pcu) , c = a + p (4.86) 2 2   2 2  
4 

For s t a b i l i t y  we must require  

(4.87) 

It i s  again  seen from the second inequa l i ty   t ha t   no   s t ab i l i t y  is  possible   for  
b = 0 o r   f o r  small b.  The damping coe f f i c i en t  b has   t o   be   su f f i c i en t ly   l a rge ,  
namely 

47 



(4.88) 

to   i n su re   s t ab i l i t y .   In   t he   absence  of  purely  gyroscopic  forces, w = 0, the  
s t a b i l i t y   c o n d i t i o n  is 

b > p/Ja (4.89) 

4.4 Discrete  Systems with Many Degrees of Freedom 

General iz ing  the  f indings  concerning  destabi l iz ing  effects  found with 
s p e c i f i c  examples  of  systems  with two degrees of freedom, i t  is p o s s i b l e   t o  
state a number of theorems  which are app l i cab le   t o  a r a the r  broad class of 
systems  with N degrees of freedom,  (Ref.  [29]). In p a r t i c u l a r ,  i t  can  be 
shown tha t   no t   on ly   s l igh t   v i scous  damping,  but a l l  s u f f i c i e n t l y  small 
velocity-dependent  forces may induce a d e s t a b i l i z i n g   e f f e c t .  

The system  considered i s  assumed t o  be holonomic and  autonomous,  and 
is sub jec t ed   t o  a set of  generalized  forces,  = Qj(F);  j =I 1,2,...,N,  which 

are defined as l inear   funct ions  of  a r e a l ,   f i n i t e  parameter F. This  para- 
meter, (0 < F < w ) ,  is associated  with  the  magnitude  of  the  externally  applied 
forces ,  = 0 f o r  F = 0. 

Qj  

Qj 
Let 

( j  - 1,2,...,N ; (4.90) 

be the  equi l ibr ium s ta te  of  the  system. With M = [M ] the  generalized mass 

matr ix ,  and 
j k  

N 
(4.91) 

j , k t 1  

the  s t ra in   energy  funct ion,  assumed t o  be pos i t ive   def in i te ,   the   equat ions  
of motion  of  the undamped system may be wr i t t en  as 

j , k  = 1,2,...,N (4.92) 

where the summation convention on a l l   r e p e a t e d   i n d i c e s  is implied and w i l l  
be employed i n  the sequel. 

Let  us assume that   the   general ized  forces ,  are given as l i nea r  
Qj  , 

functions  of  the  generalized  coordinates 

Q j  = FKjkqk j , k  = 1,2,...,N  (4.93) 

where K = [K ] is a nonsyrmnetric matrix,  and F a r ea l ,   f i n i t e   pa rame te r .  
j k  
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For F = 0 ,  (4.92) represent  the  equations of f r e e   o s c i l l a t i o n  of the undamped 
system  which we assume to  possess N distinct,   non-zero  frequencies.  

In  conjunction  with (4.92) we shall   consider  the  following  l inear  system 

j = 1,2,. . . ,N (4.94) 

where E i s  an   in f in i tes imal   quant i ty ,  G = [Gjk] a generally non-symmetric 

matrix  with  prescribed  constant  elements.  For E = 0, Eqs.  (4.94) reduce  to 
Eqs. (4.92). 

In  the  following  sections we s h a l l  prove  that   the   cr i t ical   load of system 
(4.92) is an  upper bound fo r   t he   c r i t i ca l   l oad  of system (4.94) when 0(e2)  can 
be neglected  in  comparison  with O(e) .  Only the   e f fec t  of  velocity-dependent 
forces  on t h e   c r i t i c a l   l o a d  of the   sys tem  for   f lu t te r  w i l l  be considered. The 
e f f e c t  of these  forces on the  cr i t ical   load  for   divergence i s  discussed  in  
Refs.  [6,7]. 

In   the  present   context ,   therefore ,   the  theorems  proved in   the  sequel   are  
applicable  only when a l inear   sys tem  loses   s tab i l i ty  by f l u t t e r .  

It i s  a l s o  of importance to   no te   tha t  an  autonomous, l i n e a r ,  dynamic 
aystem  can l o s e   s t a b i l i t y  by f l u t t e r  i f  and only i f  a solut ion of the form 

qk = %eiwt; k = 1,2,  ... N, admits, a t  least, one u) with  negative  imaginary 

p a r t .  Further,  we w i l l  employ the well-known property of l i nea r  autonomous 
dynamic systems of the  type  (4.92)  that  the  roots of t he   cha rac t e r i s t i c  equa- 
t i o n   a r e   e i t h e r  real or pairs of  complex conjugate numbers. 

Let  us f i r s t   c o n s i d e r   t h e   e f f e c t  of s l igh t   v i scous  damping. Thus we as- 
sume tha t  G = [G ] i s  a s y e t r i c ,  non-negative  matrix. 

j k  
We take  solutions of (4.92) and (4.94) in   the form  qk = %e i w t ;  i = J-1, 

and obtain 

- U) 2 Mjk% -I- (xjk-PKjk)+ = 0 (4.95) 

Systems  (4.95) and (4.96) are  each a set of l i n e a r ,  homogeneous equations 
i n  Ak. They have ,   therefore ,   nont r iv ia l   so lu t ions   i f  and only i f  the  deter-  

minant of t he   coe f f i c i en t s  of %, i n  each set ,  i s  equal  to  zero.  These  con- 

d i t i o n s   y i e l d  

d e t  la I = 0 
jk  

(4.97) 

(4.98) 
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I 

where a = - w M 
the matrix [a 1. 

2 
j k   j k  -k @jk-  jk 

FK ) , and d e t  \ a I denotes  the  de  terminant of 
j k  

j k  
For F * 0 ,  Eq. (4.97) y ie lds   the   na tura l   f requencies  of the   f ree   v ib-  

r a t i o n  of the undamped system. We assume that   these  f requencies  

(wl w22 e . . . e WN 
2 2 

are d i s t i n c t  and non-zero. We now increase F and assume t h a t   f o r  a c e r t a i n  
value of F, say  Fey Eq. (4.97) y i e lds ,  a t  l e a s t ,  a double  non-zero  frequency. 

Let  us  suppose  that ,   for F = Fe, (u: is equa l   t o  w (see  Fig.  4.17(a)),  while 

a l l  other  (N-2) frequencies of the  system  are   dis t inct  and non-zero. I f  F is 
now increased beyond t h i s   c r i t i c a l   v a l u e  Fe, Eq. (4.97) w i l l  y ie ld  a p a i r  of 

complex conjugate  roots  and,  consequently,  the  system w i l l  osc i l la te   wi th   an  
exponentially  increasing  amplitude  (flutter) .  We s h a l l   r e f e r   t o  F again as 

t h e   c r i t i c a l  load  for  the  system  without damping. 

2 

e 

L e t  us now consider Eq. (4.98).  For F = 0, the   roo ts  of this   equat ion 
are a l l  located on the  left-hand  side of the  imaginary  axis  in  the complex 
i w  plane. As we increase F ,  a t  l e a s t ,  one  of these  roots  approaches  the i m -  
aginary axis,  and f o r  a cer ta in   va lue  of F ,  say F Eq. (4.98) y i e lds ,  a t  

l e a s t ,  a real value  for w (see  Fig.  4.17(b)).  If F is now increased beyond 
t h i s   c r i t i c a l   v a l u e   F d ,  a t  l e a s t ,  one of the  roots  of (4.98) becomes complex 

with  negative  imaginary  part. The system,  therefore ,   loses   s tabi l i ty  by 
f l u t t e r .  We s h a l l   r e f e r   t o  Fd as the   c r i t i ca l   load   for   the   sys tem  wi th  
damping. 

d’  

and 

de t 

In  the  sequel we w i l l  f i r s t   s t u d y  a system  with two degrees  of freedom 
then  extend  our  results  to more general  systems. 

We expand the  frequency  equation of the damped system as follows 

where akS i s  the 

assume t h a t   d e t  

Then, f o r   d e t  ( G  

cofactor  of the  element a in   t he   de t  la 1.  Moreover, we 

1G. 1 # 0 (the case of d e t  \G  I = 0 w i l l  be discussed  la ter) .  

l k f i n i t e  and c of inf in i tes imal   o rder ,  we may neglect  the 

j k  j k  

jk  

j k  
last  term on the  right-hand  side  of Eq. (4.99)  and obtain 

d e t   \ a  1 + ciu, G ak j  = 0 
jk j k  

j , k  = 1 ,2  (4.100) 

Theorem 1. The cr i t i ca l   load ,   Fe ,  is an  upper bound f o r   t h e   c r i t i c a l  

load, F when O(s: ) can  be  neglected  in  comparison  with O(e) .  2 
d’  
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Proof.  For P = Pd, Eq. (4.100) has, a t  least, one real roo t ,  u) = w, and 

the   o ther   roo ts  are e i t h e r  real o r  complex with  posi t ive  imaginary  par ts   ( the 
p o s s i b i l i t y  of  complex root  with  negative  imaginary  part  is excluded, as it 
contradicts   the   assumption  that  Pd is  the cr i t ical  load).   Therefore,   for 

F = Pd and UI real , d e t  1 a I and G rkj are both real and we must  have 

- 

j k   j k  

d e t  la I = 0 
jk 

(4.101) 

G akj = o 
j k  j , k  - 1,2 (4.102) 

However, d e t  la 1 - 0 cannot  admit real r o o t s   i f  P > Fe. Therefore 
j k  

F S Fe. d 

Let us  note   that  Fd can  equal P i f  and only i f   t h e  real root  of (4.102) 

can be  made equal  to  the  double  root of  (4.101) f o r  F = F . This, of course, 
e 

e 
depends on the  other  parameters  of  the  system and may not  always be achieved, 
as exemplified  in  Sect. 4.2. 

We now r e t r a c t   t o  Eq. (4.99)  and consider  the  case when d e t  IG  I - 0 .  
j k  

The frequency  equation of the damped system  with two degrees of  freedom i s  
now given by  Eq. (4.100),  independently of the  order of magnitude  of e .  
Following  the  l ine of reasoning similar t o   t h a t  used in   the  proof of  Theo- 
r e m  1, we conclude  that   the   cr i t ical   load of the  system  without damping i s  
an  upper bound f o r   t h a t  of the  system  with damping,  no matter what the  order 
of magnitude of c may be. Therefore, we s ta te   the   fo l lov ing  theorem. 

Theorem 2. The c r i t i ca l   load ,   Fe ,  of the  system  without damping with 

two degrees  of freedom i s  an upper bound f o r   t h e   c r i t i c a l   l o a d ,  Fd,  of the 

system  with damping f o r  a l l  f i n i t e   v a l u e s  of s when de t  IG I = 0 .  
jk  

The proof of Theorem 1 w a s  an  inmediate  consequence of a property of 
the  frequency  equation  of  the  system  with damping and with two degrees of 
freedom. The problem becomes more complicated i f   the   system  has  more than 
two degrees of  freedom. However, one may s t i l l  use a similar l i n e  of rea- 
soning. 

We expand Eq. (4.98),   collect   the  terms of l i k e  power i n  e ,  and obtain 

d e t  lajk+ s i t  G I = d e t  la 1 + s i t  G akj+ O(s ) + ..., j S k = l , 2 , . . N  (4.103) 2 
j k   j k   j k  

The f i r s t  term on the  right-hand  side  of  this  equation i s  a polynomial  of 

degree N i n  w2 and may be wr i t t en  as 

(4.104) 
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Similar ly ,   the  term G akj, which is a polynomial  of  degree (N-1) i n  u) , can 

be w r i t t e n  as 

2 
j k  

(4.105) 

Therefore, Eq. (4.103)  becomes 

d e t  l a .  + siw G 1 = P(w ) + iew R(w ) + O(s ) + ... 2  2  2 
Jk j k  

(4.106) 

We neglect  O(s ) and h ighe r   i n  Eq. (4.106)  and obtain 2 

P(w2) + i S W  R(w ) 0 2 (4.10 7) 

for  the  frequency  equation of  system  (4.94). We now set  w = 1 + i cy  and 

s u b s t i t u t e   i n t o  P(w ) and R(w ) to   ob ta in  2 2 

R(A+iey) = R(A ) + O(e) + . . . 2 

Therefore, Eq. (4.107) becomes 

Neglecting terms of  order  higher  than E, we must  have 

P(X 1 = 0 ,  Y 
2 

The f i r s t   e q u a t i o n  
without damping  and the 

(4.108) 

(4.109) 

- " Ro , P'(X2) = dpo # 0 (4.110) 
2P'(X2) d  (X2) 

i n  (4.110) is  the  frequency  equation of the  system 
second  equat ion  def ines ,   to   the  f i rs t   order  of appro- 

ximation  in  €, t h e   e f f e c t   o f   s l i g h t  damping  on the  frequencies of the  system. 

The constraint   g iven by  P'(A ) # 0 indica tes   tha t   the   per turba t ion  method 

breaks d m  when  P(h ) = 0 admits  double  roots.  For F = 0,  the  roots  of  equa- 

t i o n  P(X ) = 0 are a l l  real and d i s t i n c t .  Thus i n   t h i s  case, t o   t h e   f i r s t  
order of approximation i n  e ,  the   roo ts  of Eq. (4.107) are 

2 

2 

2 

n 
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oscil lations  only  with  an  exponentially  decaying  amplitude and, therefore,  
a l l  yk; k = 1,2,. . .,N are posi t ive,  real numbers. 

We s h a l l  now assume that   the   system  with damping is s t a b l e   f o r  a l l  
F < Fd and consider  the  following cases: 

(a) F < Fd < Fe 

(b) Fe c F < Fd; F < Fd e 

(4.112) 

For  case  (a), P(X ) = 0 y i e l d s  N d i s t i n c t   r o o t s .  From  Eq. (4.111) w e  
then  obtain yk; k = 1,2,. . .,N, which are, by our  assumption, a l l  posi t ive,  

real numbers. 

2 

For case (b), P(X)2 = 0 has, a t  least, one p a i r  of complex conjugate 
roots.  We denote  these  roots by X - (ct f i B )  and from  (4.111) obtain 

1,2 

(4.113) 

which i n d i c a t e s   t h a t ,   f o r  F > Fe, the  system  with damping admits, a t   l e a s t ,  

one  complex frequency w i t h  negative  imaginary  part.  This,  therefore, con- 
tradicts  the  assumption  that   the  system is  s t a b l e   f o r  Fd > Fe. We are thus 

forced  to   take Fd s Fe i n   o r d e r   t o  remove the  contradiction. 

L e t  us note   tha t ,   fo r  F = Fd = Fe, Eqs. (4.111) can be  used only  for   the 

d i s t i n c t   r o o t s  of P(), ) = 0. The per turbat ion method,  which was introduced 

here  breaks down i f  P’(h  ) =I O(s) while R(X ) i s  non-zero. We sha l l   no t ,  
however, concern  ourselves  with a detai led  s tudy of th i s   case   here  and simply 
admit t he   poss ib i l i t y  of Fd = Fe. In f a c t ,  as Fd > Fe renders  the  system 

unstable, we can  only  conclude  that F < Fe. Therefore, w e  may s t a t e   t h e  
following theorem. 

2 

2 2 

d 

Theorem 3. The c r i t i c a l   l o a d ,  Fe, of system  (4.92) is  an  upper bound 

f o r   t h e   c r i t i c a l   l o a d ,  Fd, of the  system  with  s l ight  damping when e i s  s u f f i -  

c ient ly   small .  

For   an  arbi t rary  specif ied  matr ix  G = [ G .  ] due t o  any type  of  velocity- 
Jk 

dependent  forces  (including  gyroscopic  forces),  system (4.94) may become s e l f -  
exciting.  That is, fo r   an   i n f in i t e ly   sma l l   va lue  of F, the  frequency  equation 
of t h i s  system may possess complex roots   with  negat ive  imaginary  par ts .   In  
these cases we sha l l   ag ree   t o   de f ine  F = 0 as the cr i t ical  load  of t h i s  system. d 

On the  other  hand, the  frequency  equation of system (4.94) may y ie ld   roo t s  
with  only  posi t ive  imaginary  par ts   for  F = O(e).  This   i nd ica t e s   t ha t   t h i s  
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system i s  s t a b l e   f o r  small values of the  load  parameter F. However, as we 
increase F, one  of  these  roots may move toward the  imaginary axis i n   t h e  i w  
plane.   Therefore,   for a cer ta in   va lue   o f  P, say Fd, the  frequency  equation 

of  system (4.94) may y i e l d  a non-zero, real root.  I n  t h i s  case, i f  we then 
increase F beyond this cri t ical  value Fd, the  frequency  equation w i l l  have a 
root  with  negative  imaginary  part  and the  system w i l l  f l u t t e r .  We s h a l l  re- 
fer t o  Fd as t he  cr i t ical  load  of  system (4.94). On the  basis   of   the  above 

prel iminaries  i t  is  now possible   to   fol low  the same chain  of  arguments  out- 
l ined  previously and es tab l i sh   the   fo l lowing  more general  theorems. 

Theorem 4. The cr i t ical  load, Fe, of  system (4.92) is an  upper bound 

f o r   t h e  cr i t ical  load, Fd, of  system (4.94) when c i s  suf f ic ien t ly   smal l .  

G = [G,,] need not be a symmetric, p o s i t i v e   d e f i n i t e  matrix. 

Theorem 5. The cr i t ical  load, Fe, of  system (4.92) with N = 2 i s  an 

upper bound f o r   t h e  cr i t ical  load, Fd,  of  system (4.94) f o r  a l l  f i n i t e   v a l u e s  

of 6 when d e t  (G .  I = 0. G = [Gjk] need not  be a symmetric, p o s i t i v e   d e f i n i t e  

matrix. 
Jk 

From the above r e s u l t s  we  immediately  conclude  that, i n  a l inear  system 
with N degrees  of  freedom,  subjected  to  nonconservative (i.e. c i rculatory)  
forces ,   not   only  s l ight   viscous damping but a l l  s u f f i c i e n t l y  small veloci ty-  
dependent  forces  have, in   genera l ,  a des t ab i l i z ing   e f f ec t .  Moreover, the 
cr i t ical  load,  Fd, is  highly  dependent upon the   s t ruc tu re  of the  matrix 

G = [G. 3 but i s  always bounded from  above by the cr i t ical  load Fe. This  in- 

d ica tes   tha t ,   even  a t  the limit as c + 0, Fd is i n   g e n e r a l  less than F Let 

us   explore   th i s   po in t   in  more d e t a i l   f o r  a system  with two degrees  of  freedom. 

Jk 
e' 

For e f in i t e ,   t he   s t eady  state motion o f  the  system is  p o s s i b l e   i f   t h e  
frequency of the   osc i l la t ion   sa t i s f ies   the   fo l lowing   equat ions  (see Eq. (4.99)): 

I n   t h i s  case, one may solve  the second  equation i n  (4.114) f o r  w as a funct ion 
of  F and then   subs t i t u t e   t he   r e su l t   i n to   t he   f i r s t   equa t ion   t o   ob ta in  a re- 
la t ionship between  F and c. I n   t h i s  manner a s t ab i l i t y   cu rve ,   i n   t he   F - s  
plane, may be constructed (see Fig. 4.18). However, from Theorem 1 we i m -  
mediately  conclude  that ,   in   general ,   th- ;   curve  suffers  a f i n i t e   d i s c o n t i n u i t y  
a t  c = 0. This means tha t ,   a l though  for  E = 0 the  cr i t ical  load is Fe, f o r  

c - 0' the  cr i t ical  load is given by  Fd which is ,  in   genera l ,  less than Fe. 

Therefore,   the  point F is, in   gene ra l ,   an   i so l a t ed   po in t   i n   t he  F-c  plane 

(Fig. 4.18). This phenomenon was interpreted  physical ly   in   Sect .  4.2. 
e 
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4.5 &tabd.li&ngEffecfs i n  Continuous Sys tems 

4.5.1 Introduction 

It was  shown in   Sec t .   4 .4   tha t   in  a general   c i rculatory  syr tem  with N 
degrees of freedom  not  only  slight  viscous damping, but a l l  s u f f i c i e n t l y  small 
velocity-dependent  forces,  such as Cor io l i s   fo rces   i n   v ib ra t ing   p ipes  conveying 
f luid,   or   other   gyroscopic   forces ,  may have a des t ab i l i z ing   e f f ec t .  

For a continuous  system, however,  which possesses   an   in f in i te  number of 
degrees  of  freedom,  no  such  theorems are as yet   es tab l i shed .  To study  the  ef-  
f e c t  of  viscous damping forces  in  such  systems most inves t iga tors ,   in   genera l ,  
reduce f i r s t   the   cont inuous   sys tem  to  a d i s c r e t e  one by means o f ,   f o r  example, 
the  Galerkin method,  and then  study  the  reduced,  discrete  system [8,30,31]. 
But, as was shown in   Sec t .  4.4, a discrete  system  does,   in  fact ,   always  have 
this   property,   except   in   very  par t icular   cases .   Therefore ,  by this  approach 
one does  not know whether  the  original  continuous  system  also  exhibits  the 
same behavior  or  whether i t  i s  produced  only  through  the  reduction  procedure. 

Let  us show that  the  presence of s u f f i c i e n t l y  small velocity-dependent 
forces   in  a cont inuous  e las t ic   system  subjected  to   fol lower  forces   does,   in-  
deed,  have a des t ab i l i z ing   e f f ec t   ( c f .  Ref. c3.21). To this   end,  a can t i l e -  
vered,  continuous  pipe  conveying  fluid a t  a constant   veloci ty  i s  considered. 
The i n t e r n a l  and external   v iscous damping forces   are   a lso  included,  and then 
i t  i s  proved t h a t   t h e   c r i t i c a l   f l u t t e r  load of the  system may be reduced by 
almost 509. f o r  some combinations of these  velocity-dependent  forces. The 
method of ana lys i s   e f fec t ive ly   reduces  a complicated  nonself-adjoint boundary 
value problem (without   discret izat ion)   to  a simple  frequency  analysis by u t i -  
l iz ing  ful ly   the  fact   that   the   veloci ty-dependent   forces  are s u f f i c i e n t l y  
small. 

It is of obvious  interest   to   tes t   the   accuracy of the  widely  used  Galerkin 
method with a two-term approximation. It is  t o  be noted  that  such  an  analysis 
of this  approximate method, for  the  case when the  equations of motion of the 
system  also  contain mixed time and space  der ivat ives ,   has  been carr ied  out   in  
Ref. [32] f o r   t h e   f i r s t  time. 

C r i t i c a l   f l u t t e r   l o a d s  of the  system,  for small velocity-dependent  forces, 
and a l so   fo r   l a rge   va lues  of Cor io l i s   forces ,  were obtained by using  the  Galer- 
kin method with a two-term approximation. The r e su l t s   a r e   t hen  compared with 
the  exact  solution. It i s  then shown tha t   the  two-term approximation  yields 
suf f ic ien t ly   accura te   va lues   for   the   c r i t i ca l   f lu t te r   load   on ly   i f   the   ve loc i ty-  
dependent  forces  are small. Thus, for   large  values  of Cor io l i s   forces   the   c r i -  
t i c a l  load  obtained by the  Galerkin method with a two-term approximation may be 
g r e a t l y   i n   e r r o r .  

4.5.2 Cantilevered  Pipe Conveying Fluid 

We consider a cantilevered,  uniform  pipe  of  length L and in t e rna l   c ros s -  
s ec t iona l  area A, conveying  fluid a t  a constant   veloci ty  U. A nozzle whose 
opening i s  n times  smaller  than A i s  placed a t  the   f ree  end of the  system, as 
is  shown in  Fig.  4.19. 
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We shall assume t h a t   t h e  material of the pipe  obeys a s t r e s s - s t r a i n  re- 
lationship  of  the  Kelvin  type,  €.e., 

u = Ec + Ti (4.115) 

where E is the modulus o f   e l a s t i c i t y  and T\ is the   coeff ic ient   of   viscosi ty .  
Under the  assumption  of 
r e l a t ionsh ip ,   fo r  small 

plane  sections  remaining  plane,  the  moment-curvature 
deformations, is 

(4.116) 

where M is t he   r e su l t an t  moment a t  sec t ion  x and a t  time t,  I the moment of 
i n e r t i a ,  and y the  transverse  deflection  of  the  pipe.  With u denoting  the 
displacement  in  the x d i rec t ion ,  and z the   dis tance of each   f iber  from  the 
neu t r a l   ax i s ,  we a l s o  have 

(-J=- Mz 
I ’  (4.117) 

The equation  of  motion may  now be s t a t ed  as 

2 

ax 
L M  p 

2 (4.118) 

where p is  the   r e su l t an t  lateral  force  exer ted on the  pipe.   This   la teral  
force may be decomposed i n t o   t h r e e  parts.  The f i r s t   p a r t  i s  due t o   t h e  

i n e r t i a   f o r c e s  and i s  given by + (rn + m ) ay , where m i s  the mass of the 

pipe  per  unit   of  length,  and m the mass of  the  f luid  contained  within  the 

pipe. The second p a r t  i s  due to   Cor io l i s   acce l e ra t ion  and i s  given by 

+ 2mlU , and f i n a l l y ,   t h e   t h i r d   p a r t ,  which is  due to   equiva len t  com- 

pressive  force  induced by the   f l ux  of momentum out of the  pipe,  and i s  given 

2 

a t 2  
1 

2 

by + mlU2n % . Therefore, 
ax 

the  equation  of  motion 

and subst . i tut ion from (4.115),  (4.116),  and 
y i e lds  

axL 
(4.117) 

becomes 

i n t o  

4  5  2  2  2 
E 1  % + 91 + + m u2n 9 + 2mlu axat + (m+ml) aJr 

ax ax a t  ax a t2  

(4.119) 

(4.119) f i n a l l y  

0 (4.120) 
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If we include also the  effect of external  damping in the form K , where K 
i s  a constant,  and  introduce  the  following  dimensionless  quantities: 

mlU nL 
E1 

2 2  
2 J 12’ ss 6‘ , k214 

= F  9 

E (m*a,)L4  EI(miml) * 

then  we  obtain 

(4.12 1) 

(4.122) 

To study  the  effect of small  viscous  damping  forces  and  Coriolis  forces, 
we now let 

6’ v6, Y ’  2vY, and ,/ $ = vp (4.123) 

where v is a  small  parameter. The equation  of  motion, (4.122),  and  the boun- 
dary  conditions  at 5 = 0, 1, may then be written as 

(4.124) 

2 3 
a y * = o ;  *t s = 1  
ac2 ax3 
We wish to  study  the  stability of system (4.124) when v is  sufficiently  small. 

We let y = + (c)eicur, and reduce (4.124) to the  following  boundary  value 
problem 

(4.125) 
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where  prime  denote8  differentiation  with  respect  to 5. 

We then set + - e”; 1 = A +- i va ,  and obtain 
- 

(A+iva) + P (A+iva)2 - w2 + ivm [6(A+i~a)~ + PpF(A+iva) + 2y] = 0 (4.126) 4 2  

which is t he   cha rac t e r i s t i c  equation of  system (4 .125) .  Expanding (4.126)  in 
a series of  powers  of v ,  we are l e d   t o  

{x4 + F2A2 - w2} + (iv) @ah3 + 2F2Xa + w(6A4+ 2BFA + ZY)} + 

+ (iv)2  (6a2h2 + P2a2 + w(46aX3+ PBFa)) + ( ivI3 +ha3 + 66wa2h2} + 

+ ( i ~ ) ~  {a4 + 4w3A} + ( i ~ ) ~  (w4) = 0 (4.127) 

Next, we equate terms of l i k e  powers in   v ,   neg lec t ing  0 (v ) and higher ,  2 

and f i n a l l y   a r r i v e  a t  

A2 = - - F2 */(?) + w 2 2  2 
2 

(4.128) 

6h4 + 28Fh + 2y . a =  - u) - 
2h(2h2+ F2) 

9 A = h + i va  

- 
The solution  to  system (4.125) may  now be w r i t t e n  as + (6) = 2 AleXjS,  where 

AJ; j = 1,2,3,4,  are constants which can be obtained from the  boundary  con- 

d i t i o n s  a t  < = 0, l .   That  is, they must sa . t isfy  the  fol lowing  four   l inear ,  
homogeneous equations: 

4 

jpl 

C A j  = O  
j=1 

h 

j=l (4.129) 

j=l 

j=1 
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System (4.129) has   non-tr ivial   solut ions if and only if the determinant 
of t he   coe f f i c i en t s  is ident ical ly   zero,  i.e., the  frequency  equation is of 
t he   fo rm  (wr i t t en   ou t   exp l i c i t l y   i n  [32]) 

A* 5 A (Tj) 0 (4.130) 

Th i s   r e l a t ion  MY be  rewri t ten  with  the  a id   of  (4.128) as follows, after 

expanding it  i n  terms of  powers  of v, and neglect ing O(v ), 2 

A P { F4 + 2w + 2w ch X1 cos S + F w sh A1 s i n  A3 } - 2 2 2 

+ 6112x33 ch A1 cos 5 - 4X1 A3 sh A1 s i n  + 2hlA; sh  Al s i n  A3 + 3 2  

where 

2 F 2 + J & ) + w ,  2 2  2 A ; = T + & ) + w  F2 2 2  2 
= - -  2 

(4.131) 

(4.132) 

The f i r s t  term i n  braces ,   i n  Eq. (4.131) i s  the  frequency  equation when 
v = 0 ,  and the second term, t o   t h e   f i r s t   o r d e r  of  approximation i n  v, ind i -  
ca t e s   t he   e f f ec t   o f  small viscous damping forces  and Coriolis  forces.   For 
v = 0 ,  we obtain  the  frequency  equation of a purely elastic cant i levered beam 
subjected  to  a compressive  force  which  stays  tangent  to  the  axis a t  t h e   f r e e  
end.  The cr i t ical  va lue   o f   the   load ,   in   th i s  case, is Fe2 = 20.05, which was 
f i r s t  computed by Beck [33]. 

For non-zero bu t   su f f i c i en t ly  small values  of v and f o r  small F ,  a l l  the  
roots   of   equat ion (4.131) are l o c a t e d   t o   t h e   l e f t  of the  imaginary  axis i n  
the  complex icu plane. As w e  increase F, a t  least one of these  roots  approaches 
the  imaginary axis, and f o r  a ce r t a in   va lue  of F, say F Eq. (4.131) y i e lds  

one purely  imaginary  root iw - iwc. If we now increase  F beyond t h i s  cr i t ical  
d' 
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value Fd, one  of t he   roo t s  of (4.131) becomes complex with  negative  imaginary 

pa r t ,  a d  the  system  osci l la tes   with an exponentially  increasing  amplitude. 
Therefore,   for  given  values of 6, $ and y, we sha l l   s eek  cr i t ical  values  of 
u) = wc (real) , and F = Fd which i d e n t i c a l l y   s a t i s f y  (4.131). This is  i l l u s -  

t r a t e d   i n  Fig.  4.20 where, f o r  6 = 1, 8 = 1, and y = 0, real (Al) 3nd imagi- 

nary (-%) par t s   o f  A are p lo t ted   aga ins t   the   va lues   o f  (u . Simi la r   r e su l t s  

may be  obtained  for   other   values  of 8, 8, and y. 

2 

It may a l so   be   o f   i n t e re s t   t o   e s t ab l i sh   t he   des t ab i l i z ing   e f f ec t  of 
Cor io l i s   forces ,   in te rna l   v i scous  damping forces,  and ex terna l   v i scous  damping 
forces  independently. 

Fd 
2 

To t h i s  end, we let 6 = y = 0, $ = 1, and with yd = 2 obtain,  from Eq. 

(4.131) , yd = 1.78. S imi la r ly ,   for  $ = y = 0 and 6 = 1, the  cr i t ical  load i s  

obtained  to be yd = 1.107. However, f o r  @ = 6 = 0 and y = 1 we g e t  yd = 2.035, 

which is  equal   to   the  cr i t ical  load  of  the  system when  no velocity-dependent 
forces  are present.  That is, a l though  suf f ic ien t ly  small Coriol is   forces  and 
in te rna l   v i scous  damping fo rces  have a des t ab i l i z ing   e f f ec t   i n   t h i s   con t inuous  
system, external  viscous damping forces  do not  have  the same e f fec t .  

ll 

The combined effec:  of  velocity-dependent  forces  on  the  value  of  the cri-  

t ical  parameter yd = - FdL i s  shown in Figs.  4.21 and  4.22. I n   t h e s e   f i g u r e s  
TT 

2 

the  parameter yd is  p lo t ted   aga ins t  B / 6  for   var ious   va lues  of y. The horizon- 

t a l  dashed  l ine  in   these  f igures   represents   the cr i t ical  value  of y when  no 

velocity-dependent  forces exist and the  cant i levered column is subjected  to  
a compressive  follower  force a t  the   f r ee  end (Beck's  problem [33]). 

d 

It  i s  impor tan t   to   no te   tha t   the   s tab i l i ty   curves  shown i n   F i g s .  4.21 
and 4.22 have a f in i t e   d i scon t inu i ty  a t  v = 0. T h a t  is, although  for v = 0 

w e  have  F2 = F = 20.05, f o r  v = 0 , the  cr i t ical  value of F is, in   genera l ,  

less than 20.05. 

+ 2 
e 

It may also  be of i n t e re s t   t o   exp lo re   t he   o rde r  of  magnitude  of v f o r  
which the   des t ab i l i z ing   e f f ec t  of velocity-dependent  forces s t i l l  exists. 
This may be  accomplished by considering v large and seeking  values  of w and 
F f o r  which Eq. (4.130) is  i d e n t i c a l l y   s a t i s f i e d .  We note   tha t ,  i n  Eq. (4.130), 

+; j = 1,2,3,4, are defined as functions  of u) and the  other   parameters  of the 

system  through Eq. (4.126). In   o rder   to   c i rcumvent   the   d i f f icu l ty  of solving 

polynomials  with complex coe f f i c i en t s ,  w e  l e t  6 = y = 0 and put x = i 7  i n  Eqs. 
(4.126) and (4.130). 

- 
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The cri t ical  values of LU and F may  now be evaluated  'by a computer. The 
computer may be instructed to  obta in   the   roo ts  of Eq. (4.126) for  given  para- 
meters, and then   ca lcu la te  A, (Eq. (4.130)).  These r e s u l t s  are shown i n   F i g .  

4.23, where y, = i s  plot ted  against   values   of  ,/ 5 , by a so l id   l ine .  

The dashed   l i ne   i n   t h i s   f i gu re   co r re sponds   t o   t he  cri t ical  yd when the  Galerkin 

method with a two-term approximation is employed f o r  the analysis  as follows. 

Fd2 

ll 

We consider a set of orthonormal  eigenfunctions, {qn(g}, obtained by so l -  
ving  the  following  eigenvalue  problem 

'P, = -  'P, d$ ' 0 ;  a t  t = O  

(4.133) 

(4.134) 

(4.135) 

a 

We then l e t  Y = 1 qn(7)qn(S), 
n= 1 

(4.124), multiply  both  sides of t h i s  

s u b s t i t u t e  i t  i n t o   t h e   f i r s t   e q u a t i o n   i n  

equation by  6y = f ~ ~ ( 9  6q,(~) , and 

m = l  
i n t eg ra t e   t he   r e su l t  from zero  to  1 with  respect  t o  .% to   ob ta in  

m 

where 

Vm 
I 

=Is L 

cosh 1,s - cos &E - om(sinh hs - s i n  b,S) 

sinh - s i n  & 
cosh & + cos XIp 

(4.136) 

(4.137) 



(4.137) 

2 
= 

P 1  1 ;  f o r m = n  

System  (4.136) is  a set of nonself-adjoint ,   l inear ,  second  order, homo- 
geneous, o rd inary   d i f fe ren t ia l   equa t ions  which  admit  solutions  of  the form 

% = ArneiwT. To ob ta in   t he  cri t ical  values  of F2, we seek  conditions  under 

which u) becomes complex with  negative  imaginary  part. System  (4.136), how- 
ever, cons i s t s  of i n f i n i t e  number of  equations  each  with  infinite number of 
terms. This,   therefore,   leads  to a determinant  which  possesses  an  infinite 
number of rows and  columns. 

It i s  q u i t e  common t o  le t  m,n = 1,2 i n  Eqs. (4.136)  and reduce  this  sys- 
tem to  only two l i nea r ,  homogeneous d i f fe ren t ia l   equa t ions  [ 8 ] .  Hence, the 
characteristic equation becomes a polynomial  of  degree  four,  which  can  easily 

be  solved. The values of P2, which  render a t  least one real root  and a l l  the 
other   roots  complex with  posi t ive  imaginary  par ts ,  are then  taken  to  be  ap- 
proximat ions   to   the   c r i t i ca l   f lu t te r   loads .  

For s u f f i c i e n t l y  small values of v, w e  may neglect terms associated  with 

v2 in   the   charac te r i s t ic   equa t ion ,  and using Routh-Hurwitz c r i t e r i a ,   c a l c u l a t e  

approximate  values  of  the cr i t ical  load F = ydn . I n  Table I these  approxi- 

mate f l u t t e r   l o a d s  are compared wi th   the  exact values   obtained  in   the  previous 
section. From t h i s   t a b l e  w e  observe   tha t ,   fo r   suf f ic ien t ly  small v, the 
Galerkin method with a two-term approximation  yields  very  accurate  results.  

We no te   a l so   t ha t ,   f o r  v = 0,  this  approximate method gives  F2 = 20.15 as com- 

pared  with  the  exact  cri t ical   load, F2 = 20.05. 

2 2 

The above  conclusion, however, does  not  imply  that,  for v f i n i t e ,   t h e  ap- 
proximate method should  necessar i ly   give  suff ic ient ly   accurate   resul ts .   In  
f a c t ,  as i s  shorn i n  Fig. 4.23 f o r  6 = y = 0,  t h e   c r i t i c a l   f l u t t e r  load  ob- 
tained by the  approximate method (dashed l i n e   i n   F i g .  4.23) can be g rea t ly  i n  
er ror   for   re la t ive ly   l a rge   va lues  of the   Cor io l i s   forces .  We note   tha t ,   fo r  
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,/ $ slnsller than 0.25, t he   r e su l t i ng   e r ro r ,  when the Galcrkin method with 

a two-term approximation is used, is  lea8  than 5 percent and  decrecrscs as the  
value of v decreases. 

Among the   other   s tudies   concerned  with  the  destabi l iz ing  effects  of 
velocity-dependent  forces (and i n   p a r t i c u l a r   l i n e a r   v i s c o u s  damping),  mention 
should be made here  of  the  papers by Leipholz [34]  and Lconov and Z o r i i  [35] .  
In Ref.  [36] Bolotin and Zhinzher  have  used  an  expansion i n   f r a c t i o n a l  powers 
of the damping parameters a d  have established  the  conditions  under which li- 
near  viscous damping has no e f f e c t  on the  cri t ical  load f o r   f l u t t e r .  By con- 
trast, Z o r i i  [37]  w a s  in te res ted   in   de te rmining   the  maximum e f f e c t  which 
(small) l inear   v i scous  damping may have  on the  critical load. 

4.6 De&tabiliz.ing  Effects Due t o  Phenomena Other  than  Linear  Viscosity 

4.6.1  TheruwelasJic.  and &steretic Damving 

Not only  l inear   viscous damping, but  other  types of d i s s ipa t ion  mecha- 
nisms are assoc ia ted   wi th   des tab i l iz ing   e f fec ts .   In  Ref. [ 3 8 ]  a general   for-  
mulation of t h e   s t a b i l i t y   a n a l y s i s  of e las t ic   cont inuous  systems  subjected  to  
follower  forces i n  the  presence of  thermomechanical  coupling vas presented and 
appl ied  to   the problem  of a cant i lever  under a tangent ia l   fol lower  force at 
t h e  f r e e  eml. A pronounced destabi l iz ing  effect   of   thermoelast ic   diss ipat ion 
was found to   ex i s t .   B i l inea r   hys t e re t i c  damping was studied i n  Ref. [39] where 
i t  was shown tha t  i t  may have a des t ab i l i z ing   e f f ec t  similar to   l inear   v i scous  
damping, bu t   t ha t   t h i s   e f f ec t   d i sappea r s   fo r  a la rge  class of hys te re t ic   sys-  
tems. 

4.6.2 Magnetic- Damping i n  a Discrete  System 

Damping i n  a system  can be real ized  a lso  through  the  interact ion of a 
current  carrying  conductor  with a magnetic  field.  Leibowitz and Ackerberg 
[40] have  found that  the  motion  of  an  electrically  conducting,  perfectly 
f lex ib le   wi re   p laced   in  a transverse  magnetic  f ield w i l l  a l so  be damped, but 
i n  a manner somewhat weaker than  the  famil iar   v iscous damping. 

It i s  of i n t e r e s t   t o  examine the   e f f ec t  of such  magnetic damping  on the 
s t a b i l i t y  of equilibrium of some c i rcu la tory   e las t ic   sys tems,  cf. Ref .  [41], 
where a d d i t i o n a l   d e t a i l s  are given. A simple system  with two degrees of f r ee -  
dom is cons ide red   f i r s t ,  and a des t ab i l i za t ion  is found t o  be caused by the 
magnetic f i e  Id. 

The system cons i s t s  of two rigid  weightless  rods,   each of length A,  car- 
rying  concentrated masses m and 2m and acted upon by a fol lower  force P (Fig. 
4.24). The rods OA and AB cons t i tu te   por t ions  of e l ec t r i ca l   c i r cu i t s   hav ing  
res i s tances  R1 and R2, respect ively,  and are constrained  to  undergo a t  most 

plane  motion. A uniform  magnetic  field bo a c t s   i n  a direct ion  perpendicular  
to   the   p lane  of possible  motion. 
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A displacement  from  the  equilibrium  configuration (cpl - 'p2 - 0) w i l l  re- 
s u l t   i n  elastic r e s to r ing  moments cv and c(q2- 9 )  a t  the  hinges, and motion 

of  the  system i n  the   magnet ic   f ie ld  w i l l  iaduce a po ten t i a l   d i f f e rence  between 
any two po in t s  of the  rods  given by 

1 

(4.138) 

where the   i n t eg ra t ion  is taken  over  the  conducting  path  joining  the  points and 
v = x(sJis the   ve loc i ty  of the  conductor. The po ten t i a l   d i f f e rence  w i l l  re- 
su l t   i n   t he   gene ra t ion   o f  a current ,  a, according  to  
N 

and therefore  a fo rce  

x @ 0 * d ~  (4.139) 

p e r  un i t   l ength  of conductor  given by 

where is a un i t -   vec to r   i n   t he   d i r ec t ion  of the  current .  The f o r c e   d i s t r i -  
bution (4.140) w i l l  of  course be  normal to  the  conductor and i n  a d i r e c t i o n  
which  opposes  the  motion. 

For   the  system  being  considered  the  dis t r ibut ions  f l  and f are 2 

f l  = 

f 2  = r2(2b1+ 9' (4.141) 

where 

(4.142) 

and the   do t s   i nd ica t e   d i f f e ren t i a t ion   w i th   r e spec t   t o  time t. Taking as ge- 
neralized  coordinates  the (small) angles cpl and cp2, the   kinet ic   energy T and 

the  generalized  forces Q,, Q, are found t o  be 

(4.143) 

These  quant i t ies  are subst i tuted  into  Lagrange 's   equat ions  to   obtain  the 
l inear   equat ions of  motion: 
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(4.144) 

+ r2a2 k2/2 + cy2 = o 

The general   solut ion of the system (4.144) is taken   in   the  form 

k=1 

and leads  to   the  character is t ic   equat ion 

q0w4 + q1w3 + q2w2 + q3w + q4 - 0 

with  the  coefficients  being  given by 

qo = 2m a /c 

q1 = ( r l+ 3r2)m.t /2c 

q2 * (7-2PR/c + rlr2A /4cm)R  m/c 

q3 = (rl+ lor2- 3r2PRJc)a  2  /2c 

2 4  2 

4 2  

2  2 

q4 = 1 

Routh-Hurwitz c r i t e r i a   l e a d   t o   t h e   c r i t i c a l  load 

(4.145) 

(4.146) 

(4.147) 

(4.148) 

where 
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F - PA/c 
(4.149) 

A point   of   interest   regarding (4,148) i s  tha t   a l though $d + 03 as p l + w  
(i,e., the  system  can  be made s t a b l e   f o r   a r b i t r a r i l y   l a r g e   P ) ,  i t  remains 
f inite f o r  pl # 0 and p2 + m. I n  fact 

* 
l i m  Fmd 10/3 i f  p1 # 0 i s  f i n i t e  

I (4.150) 

I n   t h e  case of small damping, i.e., << 1, sd i s  wri t t en  Fd ana 
becomes IJ.j 

Fmd = 35/12 + n/6  + 1/4u 

- + n / 6  + 1 / 4 d 2  - (4% + 1/)~ + 45)/6]1’2 (4.15 1) 

where 

We note   tha t   the   g rea tes t   des tab i l iz ing   e f fec t  i s  rea l ized  as H + 0. We fu r the r  
no te   t ha t  F is a monotone increasing  funct ion of x.  

md 

Comparison with  the case of i n t e rna l   v i scous  damping (Q. 4.14) reveals 
t h a t  becomes  unbounded as e i t h e r  B1 o r .  B becomes large,   provided  the  other 

parameter i s  non-zero.  With  magnetic  damping, on the   o ther  hand, we have the  
r e s u l t  (4.150), and therefore  magnetic damping can  be  said  to  be weaker than 
in te rna l   v i scous  damping. Furthermore,  while it i s  poss ib le   to   e l imina te   the  
des t ab i l i z ing   e f f ec t   w i th  a viscous damping c o e f f i c i e n t   r a t i o  of  11.07, t he  
c r i t i c a l  load  of  the  magnetically damped system is always smaller than FeA. 

d 2 

It may be  of i n t e r e s t   t o  compare t h e   e f f e c t s  of  magnetic damping with 
those of l inear   ex te rna l   v i scous  damping. I f   i n   t h e   d o u b l e  pendulum system 
of Fig. 4.24 ex terna l  damping fo rces  act which are propor t iona l   to   the   ve loc i ty  
with  constants  kl  (along OA) and k2 (along AB), then  the damping f o r c e   d i s t r i -  

butions are, for   small   angles ,   l inear   funct ions of distance  along  the  rods (see 
Fig. 4.25). In t h i s  case, the  equat ions of  motion are 

+ F2 + k2@ /2 + (PA-c)cp2 = 0 2 3 (4.153) 
cont . 
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A development p a r a l l e l   t o   t h a t  which l ed   t o  Eq. (4.148) y i e l d s   t h e   f o l -  
lowing expression for t he  cri t ical  load  parameter: 

Fev - =(L - / x = )  /N (4.154) 

(4.155) 

and 

Examination of (4.154) es tabl ishes   the  fol lowing  resul ts :  

J u s t  as i n   t h e  two previous cases, the  system  can  be made s t a b l e   f o r  
a r b i t r a r i l y   l a r g e  P by l e t t i n g  Ill be a r b i t r a r i l y   l a r g e ,  i.e., as ql + 0) 

(0 f l2 is f i n i t e )  aev + 03, The behavior  of (4.154) as both 9, and l2 become 

large  resembles  that of i"d rather   than fiv. I n   t h i s  case 

l i m  Pev 16/5 i f  T1 i s  f i n i t e  

nz" (16 + 2A)/5 if 1, = AI2 
(4.157) 

Thus the  external   v iscous damping of the  type  being  considered is  a l s o  weaker 
than   the   in te rna l  damping.- It i z  noted, however, t h a t  when both damping pa- 
rameters become unbounded F f o r  a l l  A > 4. md Fev 

Another f e a t u r e  conunon t o  a l l  three  types  of damping i s  t h a t   t h e  cr i t ical  
load  approaches  the  value 2 as p2(B2,?12) approaches  zero, and t h i s   r e s u l t  i s  
independent of F ~ ( B ~ , T \ ~ ) .  I f  , however, pl(B ,'ll ) approaches  zero,  both Fd and 

approach  the  value 1/3 (independently  of pa, B ) while  the  value of fev 
1 1  

i v  2 
depends upon 12: 

67 



and 

(4.159) 

I n   t h e  case of small damping, i.e., T. c< 1, (4.154) becomes J 

Fev C35(~ + 3) + 4 ( ~  + 8 ) ( w  - 2) ] /10 (2~  + 1) 

- { [ 7 ( x  + 3)/2(2x + 1) + 2(x + 8)(n - 2)/5(2n + 1)l2 
(4.160) 

where 

This  r e s u l t   d i f f e r s  markedly  from the cases of in te rna l   v i scous  and magnetic 
damping i n   t h a t  Fev does  not depend upon w but is  equal   to   the  constant   value 

of 2. Therefore,  the cr i t ical  load  parameter l? i n   t h e  case of ex te rna l   v i s -  

cous damping d i f f e r s  from the  value of 2 a t  most by terms which are of second 
degree   i n  7 

ev 

j' 

4.6.3 Magnetic Damping i n  a Continuous  System 

As a second  example  of t he   e f f ec t  of  magnetic damping, an elastic cont i -  
nuous cant i lever   acted upon by a follower  force P w i l l  be considered  (cf. Ref. 
[41]).  According to  the  Bernoulli-Euler  theory,   the  equation of motion  which 
describes  the  system when E1 is  constant i s  

a v  a v  a v  
ax ax a t  
4 2 2 

E I ~ + P ~ + p ~ = w ( x )  (4.162) 

where E1 is the   f l exura l   r i g id i ty ,  p t he   l i nea l  mass density,  and w(x) i s  the 
force   per   un i t   l ength   ac t ing   in   the   y -d i rec t ion .  
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The displacement v(x,t) must s a t i s fy   t he  boundary conditions 

(4.163) 

Now, i f   t h e   c a n t i l e v e r  is a port ion of an electrical c i rcu i t   having  re- 
s i s tance  R and i f  the  system  undergoes  motion in   the  presence  of  a uniform 
magnetic f i e l d  8, whose d i r e c t i o n  i s  normal t o   t h e  x-y plane,  then  the  in- 

duced current  w i l l  provide  the  following damping force   d i s t r ibu t ion:  

(4.164) 

With the   subs t i tu t ion  of (4.164) i n t o  (4.162) and the introduct ion of t h e  
dimensionless  parameters 

the  equation of motion and boundary conditions  appear as 

(4.165) 

(4.166) 

a V  a v  2 3 
- = -  

a$ as 
3 = O a t 5 = 1  

I n   o r d e r   t o  deduce s t a b i l i t y  criteria f o r   t h i s  system, we consider modal 
solut ions of (4.166), i.e., w e  set 
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Subs t i tu t ion  of (4.167) i n t o  (4.166) r e su l t s   i n   t he   fo l lowing  boundary value 
problem €or Y. 

Y = -  d'f I 0 
d5 

a t  s - 0  

where the  functional K has been  defined  according  to 

1 
kr Ydg = - n2K 

0 

(4.168) 

(4.169) 

(4.170) 

We proceed now i n  a purely  formal manner to   so lve  (4.168) subjec t   to  
(4.169): The general   solut ion of  (4.168) is 

y! = A1 s i n  w15 + A2 cos w15 + A3 s inh  w25 + A4 cosh w25 + K (4.171) 

where 

w: [(F2-  4n2) 'I2 + F]/2 
(4.172) 

w2 2 = [(F2- dR 2 ) 1/2 - F]/2 

Subs t i tu t ion  of the  solut ion (4.171) in to   t he  boundary  conditions  leads  to a 
system of four nonhomogeneous a lgebra ic   equa t ions   in   the   coef f ic ien ts  
A j ( j  = 1,. . . ,4) whose so lu t ion  i s  found t o  be 

2 3  
A1 = - Kwl w2 (wlsin wlcosh w2+ w2 cos culsinh w2)/A 

A2 = Kwl w2 3 (wlw2sin wlsinh tu2- w: cos w1 cosh w2- w2 2 ) / A  
(4.173) - Kw: w;(w,sin wlcosh w2+ w2cos w s inh  w )/A 1 2 

A4 = - Kwl 3 w (w w s i n   y i n h  w2+ w: cos wlcosh w2+ wl 2 )/A 2 1 2  

where 
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+ w1w2(w1 - w2 ) s i n  w1 s i n h  % 2 2  1 (4.174) 

The f a c t   t h a t   t h e  above so lu t ion  i s  given i n  terms of   the unknown func- 
t i o n a l  K(Y) is  not a severe def ic iency   s ince   p r imary   in te res t   in  the present  
context is  focused on the   na ture  of t he  complex frequencies R. As long as 
the  real p a r t  of n is negative,   the  rod w i l l  be  asymptotically  stable, i.e., 
w i l l  oscil late  with  exponentially  decreasing  amplitude.  The c h a r a c t e r i s t i c  
equation, by which the  nature   of  Q may be  examined, is  obtained by requir ing 
that (4.171) s a t i s f y  (4.170) non t r iv i a l ly ,   t he  A being  given by (4.173). 

This  requirement  leads  to  the  following  transcendental  equation  for n: 
J 

An = v [wlw:(l-cos wl)sinh w2 - w: w z  s i n  w1 cosh w2 

3 2  - w1 w2 COS wl s inh  m2 4 + w1 w2 s i n  wl(l-coahw2) 

- w: s inh  w2 - w2 s i n  w ] = V A ~  1 (4.175) 

For small values of F and f o r   p o s i t i v e  damping (v > 0), a l l  the   roo ts  of 
(4.175) are loca ted   i n   t he   l e f t   ha l f  of t he  complex plane. As F is increased, 
one  of  the  roots  approaches  the  imaginary axis and subsequently  takes  on a 
pos i t i ve  real par t .  When this  occurs  then, by v i r t u e  of (4.167), o s c i l l a t i o n s  
with  exponentially  increasing  amplitude w i l l  r e s u l t .  The value  of  F beyond 
which n has a pos i t i ve  real p a r t  w i l l  be designated as Fd. As F + Fd, t he re  

must be  one  imaginary  root  of (4.175) , and s ince  wl, w2 are real whenever Cl 
is imaginary,  both  sides  of (4.175)  must approach  zero  simultaneously. 

The cr i t ical  load i s  found  numerically t o  be Fd = 12.84, and the   r e su l t  

i s  independent of the  magnitude  of  the  magnetic damping (provided i t  is non- 
zero). Comparing t h i s  value  with  the cr i t ical  load in   the  absence of a mag- 
n e t i c   f i e l d ,   F  = 20.05, w e  f ind  that   the  magnetic damping has a des t ab i l i z ing  

e f f e c t  of 36 percent. 
eL 

4.6.4 Retarded  Follower  Force 

The system  with two degrees  of  freedom  discussed i n  Sect. 3.1 was sub- 
j e c t e d   i n  Ref.  [42] t o  a retarded  follower  force. It is remarkable  that a de- 
s t a b i l i z i n g   e f f e c t  is  assoc ia ted   a l so   wi th   re ta rda t ion  of a follower  force  with 
constant time lag T, which was specif ied as 
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The l inear ized   equat ions   for  small motions  about  the  posit ion of static equi- 
l ibrium (cpl = 'p2 = 0 )  are 

(4.177) 

Solutions are sought  again in t he  form  (4.4)  and lead  to  the  frequency equa- 
t i o n  

3me w + 2c - Pa 2 2  d 2 w 2  - c + Ple-"' 

m?uJ - c  m~ w + c - PI, + Pie-'"' 

- 0  (4.178) 
2 2  2 2  

The presence of exponential terms suggests   the  appl icat ion of  Pontryagin's 
s t a b i l i t y  cri teria rather  than  those of Routh-Hurwitz. After  a comprehensive 
and ra ther   e labora te   ana lys i s  we a r r ive   t o   t he   impor t an t   r e su l t   t ha t  a very 
small (vanishing) time lag  renders   the  system  unstable   for  a l l  p o s i t i v e  (com- 
pressive)  values of the  applied  force P. Even under the most favorable time 
lag  the cr i t ical  load was found t o  be F 5 PR/c = 0.177, as compared t o  
F = 2.086 f o r   t h e  same system  without any r e t a rda t ion  r. 

In  supplementing  the  analysis of  Ref.  [42], i t  may be  remarked here   tha t  
f o r  small time l ag   t he   s t ab i l i t y   i nves t iga t ion   can   be   r ead i ly   ca r r i ed   ou t  em- 

ploying  the  simpler Routh-Hurwitz criteria. I f  cp (t-') is expanded i n t o  a 
Taylor series about cp (t) (see Ref. [ 183) and i f  o n l y   t h e   f i r s t  two terms are 
retained,  the  equations of motion  simplify  to: 

2 

2 

and lead  to  the  frequency  equation of the form 

4 3 2 
PoR + P l R  + P2n + p3n + p4 = 0 

with 

P, = 2; P 1  = - 2FT; 

(4.180) 

(4.181) 
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where 

n2 = In.e w /c; 2 2  F = PR/c; 

T = w / R  = r /c/A ,fm 
(4.182) 

One of the  Routh-Hurui tz   condi t ions  for   asymptot ic   s tabi l i ty  i s  t h a t  po and 

p be of t he  same s i g n  which r e s u l t s   i n   t h e  cr i t ical  value of  Fcr * 0 ,  t h a t  

i s  f o r  F < 0 the  system i s  asymptot ical ly   s table  and f o r  F > 0 it  is  unstable, 
ver i fy ing   thus   the   resu l t   o f  Ref. [42]. The remaining Routh-Hurwitz condi- 
tions  do  not  supply more stringent  requirements of  F. It i s  noteworthy  that 

does  not depend on  the  value of T. The conclusion i s  reached   tha t   in   the  

presence  of  even  the  slightest  lag  the  system is  unstable  under a compressive 
follower  force.  Further,  the  Taylor series expansion  introduced  above  clearly 
exhib i t s   tha t   smal l  time lag i s  associated  with  the  introduction of terms of 
odd power in   the   f requency   equat ion ,   having   th i s   in  common with  l inear   viscous 
damping. 

1 

The d e s t a b i l i z i n g   e f f e c t  is  in   general   in t roduced by any s u f f i c i e n t l y  
small, velocity-dependent  forces,  such as, f o r  example, Cor io l i s   forces .  Some 
types  of  such  forces are r ea l i zed  by f l u i d  jets;  they  have  received  conside- 
r a b l e   a t t e n t i o n  and have  been re fer red   to  as " je t  damping," [43]. Others are 
produced,  e.g., by flow  through  pipes [44]. 

4.7  Uncertainties 

The foregoing  examples  of  various  destabil izing  effects amply i l l u s t r a t e  
the  necessi ty  of a firmer  grasp of c e r t a i n   a s p e c t s   i n   t h e   a n a l y s i s  of s t a b i l i t y  
problems as appl ied  to   systems  subjected  to   fol lower  forces ,   cf .  [45]. What 
is  needed i n  particular i s  addi t ional   insight   into  the  experimental   determi-  
nation of system  parameters,  cf.  Sect. 8 . 2 .  I f   ve ry  small, even  vanishing 
quan t i t i e s  which  induce a d e s t a b i l i z i n g   e f f e c t  have such a decisive  influence 
on the cr i t ical  loads  calculated  analyt ical ly ,  how should  these  quant i t ies  be 
measured with  required  accuracy?  Further, how can  one  be sure   that   the   "correct"  
or  "right"parameters have  been included? It is  even  conceivable  that  (vanishing) 
d e s t a b i l i z i n g   e f f e c t s   e x i s t  which  have  never  been  thought of as ye t ,  and which 
have  perhaps an even stronger  influence on the  s tabi l i ty   boundaries   of  a given 
system  than any of  those  mentioned. Below  some at tempts   are   descr ibed  to  re- 
medy this   obviously  unsat isfactory state of a f f a i r s .  

I f  w e  are deal ing  with a man-made system, i t  would probably  be  desirable, 
i f   p o s s i b l e ,   t o  make it well-behaved by  means of a su i tab le   choice  of  system 
parameters and, i n   p a r t i c u l a r ,  by making i t  s t rongly  asymptot ical ly   s table   to  
begin  with. T h i s  is done  sometimes in   cont ro l   sys tems where the  "doubtful," 
"critical" or  "marginal" case of  Liapunov (pure  imaginary  roots  of  the  charac- 
teristic equation) is  in t e rp re t ed  as describing  an  inherently  unstable  system. 
It is well known t h a t   i f  a system is asymptotically  stable,  small "destabi- 
l i z ing"   quant i t ies  w i l l  have  but a small e f f e c t   o n   t h e   c r i t i c a l   l o a d s ;   t h i s  
e f f e c t  w i l l  vanish  with  the  vanishing of the  "destabil izing"  quantity.  
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In  many  man-made systems and in   given  natural   systems  the  uncertainty  can-  
not be  circumvented i n   t h i s  manner. It may then be suggested  that   the   analysis  
of s t a b i l i t y  be  replaced  (or  supplemented) by an  analysis  of "patterns  of  be- 
havior"  of  the  disturbed  system  for  various  ranges  of  the  controll ing  parameter 
(force).  Since we are in te res ted   here   on ly   in   osc i l la tory   response  t o  a d i s -  
turbance,  three  types  of  behavior are qua l i t a t ive ly   ske t ched   i n  F i g .  4.26. L e t  
i t  be  our aim t o   c l a s s i f y   t h e   r e s p o n s e   i n   j u s t  two categories .  Depending upon 
the  specific  performance  requirements  of  the  system a t  hand, i t  may be  meaning- 
fu l   t o   p l ace   t he   r e sponse   i n  Figs.  4.26a  and 4.26b i n t o  one category and the 
response   in   F ig .   4 .26~  in to   the   o ther .   In   the   f i r s t   ca tegory   the   d i s turbance  
remains small during a c e r t a i n   i n t e r v a l  of  time,  while  growing f a i r l y   l a r g e   i n  
the  second  category  during  the same in t e rva l .  

As a measure  of  the rate of  growth of t he   o sc i l l a t ions  i t  i s  convenient  to 
introduce  the  largest  real part  CY of the  re levant   root  of t he   cha rac t e r i s t i c  
equation.  This is analogous to   the  introduct ion  of   the smallest negat ive  par t  
as the   "absolu te   s tab i l i ty  margin" [18]. 

The s tab i l i ty   ana lys i s   cor responding   to  a given cy > 0 can be carr ied  out  
by introducing  the  transformation  (Fig.  4.27) 

n = p + a  (4.183) 

in to   the   charac te r i s t ic   equa t ion ,   e .g . ,  

4 3 2 
p0n + P p  + P2n + p3n + p4 = 0 

which yields   the  modif ied  character is t ic   equat ion  for  p 

aOP 
4 + a l p 3  + a2p2 + a p + a4 = 0 

3 

where 

a. - - po; al * PI + b p 0 ;  a2 - - 

a3 3 = p + 2cup2+ 3a  pl+ 4a Po; a4 - 2 3 - 

(4.184) 

Pg + k P 1  + 6CY Po 

P4+ cup3+ Q P2+ @ PI+ Po 

2 (4.185) 

2 3 4 

Applying the  usual  Routh-Hurwitz c r i te r ia   to   th i s   modi f ied   equat ion ,   the   c r i -  
t i ca l   force   can  be calculated.   For  the  system  of  Fig.   4.1  the  cri t ical   force 
F is  t o  be calculated from 

C 

x ~ a a a  2 2 
1 2 3 - a0a3 - al a4 (4.186) 

and is found t o  be 
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vherc 

A = 8cr(dl-&do) 

B = dld3 + 2 d l d 2  - 4 d o d 3  - CY 2 2  dl 

C = dld2d3 - d o d t  - dl 2 d4 

and 

(4.188) 

(4.189) 

The r e s u l t s  of the  numerical   calculat ions  are   displayed  in   Fig.  4.28.  Thin 
so l id   l i nes   r ep resen t   t he   c r i t i ca l   fo rce  Fc as function  of  the  growth  para- 
meter a for  given damping c o e f f i c i e n t s  B The thin  curves  in  Fig.  4.28 a r e  

the same as those  in  Fig.  4.5,  but  they  have  been  calculated i n  a d i f f e r e n t  
manner and t h e i r   i n t e r p r e t a t i o n  i s  a l s o   e n t i r e l y   d i f f e r e n t .  

i' 

The cr i t i ca l   force   as   def ined   wi th   the  a i d  of the growth parameter a i s  
not   ent i re ly   sat isfactory  because i t  does  not separate the   d i f fe ren t   types  of 
behavior   i l lus t ra ted   in   F ig .  4.26. We seek now to   de f ine  what we may c a l l  a 
" t ransi t ion"  force  Ft   bel-  which CY (whether  positive  or  negative) would be 

r e l a t i v e l y  small and  above  which i t  would be re la t ive ly   l a rge .  It appears  to 
be reasonable   to   def ine   the   t rans i t ion   force   F t  as the  force  for  which the 

absolute  value of the  curvature of a given  curve  F(a) = 0 a t t a i n s  a maximum. 
Corresponding  calculations  have been carried  out and the  values of the  tran- 
s i t ion  force  Ft   for   var ious  values  of the damping coeff ic ients   have been 
joined by a th i ck   so l id   l i ne   i n   F ig .  4.28. It is noted  that  for  given damping 
coe f f i c i en t s  Bi there   ex is t s   an   assoc ia ted   t rans i t ion   force  F which in   t u rn  

corresponds  to a ce r t a in   pa r t i cu la r   va lue  of growth  parameter CY The expe- 

rimental  determination of system  parameters  associated  with F appears  to be 

feasible .  It should be a l s o  observed  that as damping decreases F approaches 

Fe,  while F approaches F as  damping increases.  The r e l a t ionsh ip  be'tween 

c r i t i c a l  and t r ans i t i on   fo rces  is thus   c la r i f ied .  

t 

t ' 

t 

t 

t d 

It i s  rather   evident   that   the  two types of system  behavior which a r e  
separated by Ft  can be l e s s   o r  more d i f f e r e n t  and t h u s ' i t  may be appropriate 
to   introduce  the  not ion of degree of separation CJ associated  with any par t icu-  
lar value  of Ft. This   addi t iona l   charac te r i s t ic   separa t ing   "pa t te rns  of 
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behavior"  could be made t o  depend on the  magnitudes  of  curvature and slope of 
the  function F ( d  a t  CYt. 

The parameter (Y can  be employed yet  for  another,   purely  mathematical  
purpose.  For small cy, B1 and B2 Eq. (4.186) may be w r i t t e n   i n   t h e  form 

Here  Fel  and Fe2 are   the  cr i t ical   loads  obtained  in   the  absence of  damping, 

while F is  t h e   c r i t i c a l  load  for  vanishing damping. It is observed  that   e i ther  

c r i t i c a l  load may be obtained by a l imi t ing   process   in  Eq. (4.190), which 
g ives   e i the r  (Y, F, B1 or B2 i n  terms of the  remaining  three  quantit ies.   If  

the growth parameter (Y 4 0 ,  i t  i s  seen  that  F 4 Fd , which depends  only on 

0 =' B1/B2 but  not on B1 and B2 i t s e l f .  By con t r a s t ,   i f   t he  damping c o e f f i -  

c i e n t s  are made to   van i sh   f i r s t ,   t hen  F -. Fel o r  I? - Fe2, regardless  of the 

value  of  the  (small)  value of a. Thus the   introduct ion of the growth para- 
meter (Y permits   to   approach  the  cr i t ical   load  for  no damping F even in   t he  

presence of vanishing damping,  removing mathematically any des t ab i l i z ing  
e f f e c t s .  

d 

e l  
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CHAPTER V 

CO~INUOUS SYSTEMS 

5.1  Introduction 

In  the  preceding  chapter  one aspect of problems  of  continua was not ela- 
borated upon, namely, t h a t   s t a b i l i t y  must  necessar i ly  be defined  with  respect 
t o  a metric (sometimes implied)  which  measures d i s t a n c e   i n   a n   i n f i n i t e -  
dimensional  space. One has   to   def ine  what is meant by "nearness" t o   t h e  
equilibrium  configuration whose s t a b i l i t y  i s  being examined. This metric 
may be pos tu l a t ed   i n   va r ious   su i t ab le  forms, depending upon the  physical  as- 
pects  and the  requirements  of  the  specific  problem at  hand. The equations  of 
the boundary value problem of a continuum, together   with  an  expl ic i t ly   def ined 
metric p form a funct ional  metric space whose fundamental  properties depend 
strongly on p and thus   l ead   t o   d i f f e ren t   r e su l t s  of a s t a b i l i t y   a n a l y s i s .  

With re ference   to  a conservative  system,  Koiter [46,47] has  pointed  out 
t h a t  a conventional  generalization of  Liapunov's  definition of s t a b i l i t y ,  
which requires   that   the   displacements  and the   ve loc i t i e s   r ema in   a rb i t r a r i l y  
small at each  point and f o r  a l l  pos i t i ve  t i m e ,  p rovided   the   in i t ia l   d i s turb-  
ances are s u f f i c i e n t l y  small, can  hardly be considered  sat isfactory.  A modi- 
fied  concept of s t a b i l i t y  was suggested which reduces  to  Liapunov's  definit ion 
fo r   t he  case of a d i s c r e t e  system. 

I n   t h i s  Chapter,  following  the  development of  Ref. [48], a s u f f i c i e n t  
c o n d i t i o n   f o r   t h e   s t a b i l i t y  of a l i n e a r l y   v i s c o e l a s t i c  continuum  subjected  to 
sur face   t rac t ions  which fol low  par t ia l ly   the  deformation of the   so l id  i s  estab- 
l ished  with  respect  to  an  average metric. 

5.2 Defini t ions of S t a b i l i t y  

We consider a f i n i t e   i s o t r o p i c ,  homogeneous, l i n e a r l y   v i s c o e l a s t i c   s o l i d ,  
bounded by a regular   surface S, contained i n  a volume V. A t  the time t = 0, 
the   so l id  i s  i n  a state of i n i t i a l  stress uij: i , j  1,2,3,  caused by a sys- 

t e m  of pa r t i a l   fo l lower   su r f ace   t r ac t ions  pi, applied a t  the boundary S. We 
s h a l l   r e f e r   t o   t h e   s t a t e   o f   i n i t i a l  stress of the   so l id  as unperturbed  (equi- 
librium) state and study i ts  possible  motions  with  reference  to  this state. 
Furthermore, w e  s h a l l  assume tha t   the   quant i t ies   descr ib ing   the   per turbed  state 
a r e  small ( these   quant i t ies  w i l l ,  subsequently,  be  indicated by a bar) so t h a t  
a l l  terms of order  higher  than  the  second may be  neglected. The equations of 
motion  of  the  perturbed  solid,  referred  to a fixed  orthogonal  Cartesian  coordi- 
nate  system, are [ 8 ]  .. 

i , j , k  = 1,2,3 
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where m is the mass density,  x are the  coordinates ,  ii the  displacement com- 

ponents measured  from the  unperturbed state, t h e  components of   the   un i t  

normal t o  S, ci the  per turbat ions  of   the   appl ied  surface  t ract ions.   In   these 

equations and in   the   sequel   the   repea ted   ind ices  are s-ed over  the  range  of 
t h e i r   d e f i n i t i o n .  A coma  followed by ind ices  k, j i n d i c a t e s   d i f f e r e n t i a t i o n  
wi th   respec t   to  xj, %, and dots   denote   der iva t ives   wi th   respec t   to  time. We 
shall assume here   tha t  

j i 

"3 

+ 
where a(x) J cu(x1,x2,x3) is a parameter  which  serves  to  describe  the manner 

i n  which the  surface  t ract ions  fol low  the  deformation.   I f  Q 0 the  system 
i s  conservative and f o r  cy E 1 w e  have the case of  follower  force  introduced 
i n  [8]. The cons t i t u t ive   equa t ions   sha l l  be taken in  the  form 

ci j kA = A'6ij6ke + 2p'bikbjQ 

where 6 is the Kronecker d e l t a ,  1 and p are Lame' constants,  and A' and p '  

are viscous  constants  corresponding  to Lame' constants.  
i j  

A genera l   so lu t ion   to   the   nonse l f -ad jo in t  mixed i n i t i a l  and boundary 
value problem (5.1) cannot, in   general ,   be   easi ly   obtained.   Therefore ,   in  
order   to   s tudy   the .   s tab i l i ty  of t h i s  system, w e  have t o   r e s o r t   t o  some other  
means and, consequently, we sha l l   no t   expec t   to   ga in  as much information  con- 
ce rn ing   s t ab i l i t y  as we  would i f  we  were to   cons t ruc t  and evaluate  a general  
so lu t ion  of the  system. As w e  s h a l l  see, t h i s  is by  no means a shortcoming. 
A s t r o n g   s t a b i l i t y   c r i t e r i o n ,   t h a t  may be  imposed  on the  system and which 
could  be  applied i f  w e  were to  solve  system (5.1) completely, would be  of 
doubt fu l   in te res t .  

In   t h i s   connec t ion ,  we sha l l   cons ider  a ce r t a in   func t iona l  (which, i n  
effect ,   expresses  the  energy of the  system) and exp lo re   t he   s t ab i l i t y  of 
(5.1) i n  some appropriate  average  sense.  Furthermore, we s h a l l  show t h a t  
the  usual  Galerkin method, which  reduces  the  system  of   par t ia l   d i f ferent ia l  
equations (5.1) t o  a set of ord inary   d i f fe ren t ia l   equa t ions ,   y ie lds   the  same 
r e s u l t s  as those  obtained by a study of the  funct ional  mentioned,  provided 
a l l  t he  series expansions employed converge i n  an average  sense. 

To t h i s  end, we  consider a complete set of normalized  eigenvectors, ob- 
tained by solving  the _homogeneous, self-adjoint   system deduced  from (5.1) by 
s e t t i n g  u = cijka = pi = 0,  which  has  the same geometrical boundary 

0 i j  
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conditions as t h e   o r i g i n a l  problem. Let t h i s  set of  orthonormal  eigenvectors 

be  denoted by {cpin(x)]; i = 1,2,3, n = 1,2,. ..,-. We shal l   reduce   our   o r ig i -  

nal   system of p a r t i a l   t o  a system  of  ordinary  differential   equations by ex- 
panding ij and i ts  d e r i v a t i v e s   i n  terms of these  eigenvectors,   without any 

at tempt   to   resolve  the  quest ion  of  convergence. However,  some comparison 
between the   resu l t s   ob ta ined  by applying  this  method t o  some simple  problems 
a d  the exact so lu t ions  [ 8 ]  cer tainly  suggests   that   convergence may be as- 
slrmed.* I n   o u r  problem, w e  sha l l   t he re fo re  state t h a t   i f  convergence exists 
(in  an  average  sense a t  least) then  the two methods y i e l d   i d e n t i c a l   r e s u l t s .  

+ 

i 

Let  us now consider  the  fundamental   question  concerning  stabil i ty of  a 
so l id ,  and review f i r s t   t h e   d e f i n i t i o n s  of s t a b i l i t y   f o r  a d i s c r e t e  system, 
mentioned in   t he   In t roduc t ion .  

We examine a system  with r degrees  of  freedom  described by generalized 
coordinates qn and genera l ized   ve loc i t ies  4,; n = 1,2,..,,r.  For a holonomic 

and  autonomous system, w e  write the  equations  of  motion as 

i n = fn(zl,z 2...,z 2r); n = 1,2,..  .,2r 

where 

z =  r+n 4,; n - 1,2,...,r 

3 
and f,(z) are bounded, continuous, real functions  vanishing  €or z = 0 .  We 

assume f n   s a t i s f y  a l l  the  condi t ions  required  for   the  exis tence of a single-  
va lued   so lu t ion   for  t > 0 i n   t he   r eg ion  of t h e   d e f i n i t i o n  of z Furthermore, 

w e  represent  the state of t h i s  dynamic system by a p o i n t   i n  a 2r-dimensional 
Euclidean  space, EZr, with  coordinates z n = 1,2,. . . ,2r.  The equilibrium 

s t a t e  of the  system a t  the   o r ig in  i s  s a i d   t o  be s t a b l e   i f   € o r  any c > 0 we 

can  f ind a 6 > 0 depending on c only  such  that  when 1 z: < 6 a t  t = 0 ,  

we have 1 Z: < c f o r  a l l  t > 0 .  In the  opposite case z = 0 i s  ca l l ed  

n 

n* 

n' 

2 r  

2 r  n=l 

n 
n=l 

unstable [14]. Furthermore, z = 0 i s  ca l led   asymptot ica l ly   s tab le   i f  i t  is  
.~ 

n 

. "" ~. ~ ~ ~~. " ~ ~ ~~~~ 

* The paradox i n  the  problem of f l u t t e r  of a membrane, as was shown i n  
[ 8 ] ,  is not   re la ted   to   the   fac t   tha t   the   sys tem is nonself-adjoint. 
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The above d e f i n i t i o n s   o f   s t a b i l i t y  are due t o  Liapunov [11,14]. He  a l s o  
suppl ied  the  proofs   of   necessi ty  and suff ic iency,  employing the   no t ion   of   d i s -  
tance  in   the  f ini te-dimensional   Eucl idean  space E 2 r  

For   systems  with  an  inf ini te  number of degrees  of  freedom  (continuous 
systems)  the  notion of d i s tance   in   an   in f in i te   d imens iona l   space   needs   to   be  
introduced, i f  one  wishes t o  extend  Liapunov's  concepts t o  such  systems. I n  
t h i s  case, we have t o  be  concerned  with  functionals  rather  than  functions and 
must exp l i c i t l y   de f ine  a measure (metric p) of d i s t ance  of two s t a t e s  of the  
system and then   s tudy   t he   s t ab i l i t y  of the   sys tem  wi th   respec t   to   th i s  metric p .  
The metric p may be  selected i n  any s u i t a b l e  manner (provided it s a t i s f i e s   t h r e e  
fundamental  conditions [ 4 9 ]  so as t o   f u l f i l l  some physical  requirements of t he  
problem at hand. It may be  desirable ,   for  example, t o  limit the  displacements 
and t h e   v e l o c i t i e s  a t  each  point  of  the  solid,   in  which case we def ine  . .  

" 

p1 = uiui + Uiiii everywhere i n  V and on S 

I n  some o ther  cases, w e  may wish  to  restrict t h e   s t r a i n s  as w e l l  a s   t he   d i s -  
placements and the   ve loc i t i e . ;  a t  each  point of the   so l id ,   such   tha t  

" 

pp = uiui + u u + u . .  - 
i i i,jui,j 

everywhere i n  V and on S 

For most p r a c t i c a l  problems,  however, i t  i s  usua l ly   p re fe rab le   t o   de f ine  
p in   an   average   sense ;   for  example, 

- 
pg = Jv [:pi + i i , j u i ,  + upi] dv 

We now state t h e   d e f i n i t i o n  of t h e   s t a b i l i t y   o f   t h e   i n i t i a l  state of a 
so l id   w i th   r e spec t   t o   an   exp l i c i t l y   de f ined  metric p, by appropriately ex- 
tending  the  corresponding  def ini t ion  for  a f i n i t e  system. 

The i n i t i a l  state of  the  continuous  solid is sa id   t o  be s t a b l e   i f   f o r  a 
given E > 0 w e  can  f ind a b > 0 depending  on B only  such  that  when p < 6 a t  
t = 0 we have p < E f o r  a l l  t > 0 .  I n   t h e   o p p o s i t e   c a s e ,   t h e   i n i t i a l  state 
i s  called  unstable.  Furthermore,  the  unperturbed state is called  asymptoti- 
c a l l y   s t a b l e   i f  i t  i s  stable and l i m  p = 0 .  The suf f ic iency  theorem  of s t a b i -  

l i t y  may  now be s t a t ed  as follows: 
t + -  

Theorem. I n   o r d e r  that the  unperturbed state of  system (5.1)  be s t a b l e  
wi th   respec t   to  a metr ic  p, it is  s u f f i c i e n t   t h a t   t h e r e   e x i s t s ,  by v i r t u e  of 
the  requirements  of  the  boundary  value  problem  (5.1), a f ini te ,   nonincreasing 
functional  which is iden t i ca l ly   equa l   t o   ze ro   fo r  p = 0 and admi ts   an   in f in i -  
t e l y  small upper bound wi th   respec t   to   the  metric p .  

This theorem i s  an  appropriate   vers ion of t h e  theorem of s t a b i l i t y   g i v e n  
by  Movchan '[SO]. I n  the  sequel  we s h a l l   u s e   t h i s  theorem t o   e s t a b l i s h  a suf-  
f i c i e n c y   c r i t e r i o n   f o r   t h e   s t a b i l i t y  of  system  (5.1). But let us f i r s t   d i s -  
cuss some aspec ts   o f   the   def in i t ion  of s t a b i l i t y .  
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It is  seen   t ha t   t he   s t ab i l i t y  cri teria are highly  dependent upon the  spe- 
c i f icat ion  of   the  metr ic  p .  We may not ,   therefore ,   expect   to   apply a c r i t e r i o n  
obtained,  say,   for p t o  p2 and g e t   l i k e   r e s u l t s .  The problem which was t reated 

by Shield and Green r51] may exemplify  this  very  point.  An i so t rop ic ,  hcmoge- 
neous,   l inear ly   e las t ic   sphere was  perturbed by r a d i a l l y  symmetric  applied  in- 
f ini tes imal   dis turbances a t  t * 0 and i t  was shown t h a t   t h e   s t r a i n  a t  the  center  
of the  sphere  can become f i n i t e   f o r  sane t > 0. L e t  us show that   a l though  this  
system is unstable   with  respect   to   the  metr ic  p2,  i t  is  s t ab le   w i th   r e spec t   t o  

p3. To t h i s  end consider  the  following  functional 

3 

whose t i m e  de r iva t ive  i s  zero by v i r t u e  of the  equation  of  motion, and  which 
admits  an  infinitesimal  upper bound wi th   respec t   to   the  metric p3. From the 
i n e q u a l i t i e s  [ 5 2 ]  

c1 s, -i-i u u dv g s, ui,  jui,  jdv 
" 

'2 jv Ui,jui,jdv * Jv CijkAzi,j%,4dv 
" 

which a re   va l id   fo r  a l l  admissible  motions of the  sol id ,with C1 and C2 being 

fixed  posit ive  constants  independent of a we immediately  construct  the  in- 
equa l i ty  iy 

H1 2 Kp3 f o r  a l l  t 2 0 

where K i s  a l s o  a f ixed   pos i t ive  number not  dependent on i~ We le t  H1 < Ke 
and obtain p < a t  t = 0. B u t  H is a nonincreasing  function of time. 

Therefore Kc i s  an upper bound of H1 f o r  a l l  t 2 0, which impl ies  

i' 

3 1 

p 3  < e f o r  a l l  t 2 0 

In  [51], t h e   i n i t i a l   d i s t u r b a n c e s  were taken  to be 

where r measures  distances from the  center of the  sphere, c = , and 
f ( r )  is  given by m 

f (r)  = 0 O r r 5 a  

f ( r )  = - (r-a) (r-a-2ea) 1 4 a < r g a + + e a  5 5  e a  
f ( r )  = 0 a + 2ea i; r 
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u = -  r2 (2ca-r)  (7r-6ca) 3 
5 5  e a  

which  immediately y i e l d s  p = O(g) a t  t = a/c, whi le   the   s t ra in  a t  the  center  

of the  sphere a t  t h i s   i n s t a n t  i s  f i n i t e :  
3 

= 6  
r=ea r5ea 

I n   t h i s  example, one is  able   to   obtain  an  exact   solut ion  to   the  differen-  
t i a l  equations of the boundary value problem. Therefore, one is  in   the   pos i t ion  
of requir ing as strong a s t a b i l i t y   c r i t e r i o n  as one pleases.  We see tha t   the  
system is  not   s tab le   wi th   respec t   to  p although i t  i s  s tab le   wi th   respec t  2 '  
t o  p 3 .  The important   point   to   note   in   this   connect ion is t h a t   t h e   s t a b i l i t y  

wi th   respec t   to   the   met r ic  p could  have  been  deduced  without  possessing  an 

exp l i c i t   so lu t ion  of the problem. 
3 

In most practical  problems,  the  system may well  be s t a b l e   f o r  a l l  p r a c t i -  
cal   purposes,   while i t  may not   sa t i s fy   the   po in twise   s tab i l i ty   condi t ions   wi th  
respec t   to   the   met r ics  p and p In  those cases there  may e x i s t  a f i n i t e  

number of p o i n t s   i n  V where  an inf in i tes imal   per turba t ion  a t  t = 0 may cause 
f i n i t e ,   s a y ,   s t r a i n s  a t  these   po in ts   for  some t > 0. I f   t he   co l l ec t ion  of 
these  points forms a set with measure zero,   then  the  s tabi l i ty  may ex i s t   w i th  
respect   to   the  metr ic  p 

1 2' 

3' 

The metric p seems t o  be more appeal ing  a lso from a purely  mathematical 3 
point of  view. In   t h i s   r ega rd ,   l e t  u s  note   that   the   ser ies   expansion of a 
piecewise  continuous  function  in a f i n i t e  domain i s  an  approximation  in a mean 
square  sense and not a pointwise  representation. The following  discussion w i l l ,  
therefore ,  be devoted   to   the   s tab i l i ty  of system  (5.1)  with  respect t o   t h e  
metric p 3' 

5.3  Analysis  of  Stability 

We consider a funct ional  H given by 

and note   tha t ,  from the  requirements of the boundary  value  problem  (5.1), H is 
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I 

a continuous 
state of the 

funct ional  which vanishes   ident ica l ly  a t  t h e   i n i t i a l  Unperturbed 
s o l i d ,  p g  = 0.  The t o t a l  t i m e  der iva t ive  of H is 

But we have 

and 

" ,fstujkui,  kn J - k ] ZidS 

where in   t he  last  reduction we have  used  the fact   that   for   the  unperturbed 
state we have 

U i J , J  = O  i n  V and ajknk a on S 

Equation (5.5) noy becomes 

p 3  C 15Vs a t  t = 0 

Then, as H > 0, we have 

H <  Kc - 6 a t  t - 0 

* The i n i t i a l   d i s t u r b a n c e s  may a l so   admi t   s ingu la r i t i e s  a t  f i n i t e  number 
of i so l a t ed   po in t s   i n  V such  that  p = O(s),  and H = O(c) a t  t = 0. 3 
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where K is  a posi t ive  constant .  But 6 i s  an  upper bound of H f o r  a l l  t > 0 ,  
as H is a nonincreasing  function  of time. Therefore, i f  H is  a posi t ive  de-  
f in i t e   func t iona l ,   t hen  a l l  the  requirements of the  suff ic iency theorem are 
f u l f i l l e d  and we have  the  following theorem: 

Theorem. For a l i nea r ly   v i scoe la s t i c   so l id   sub jec t ed   t o  a set of  par- 
t i a l   f o l l o w e r   f o r c e s   t o  be s t ab le   w i th   r e spec t   t o   t he  metric p i t  i s  suf- . 
f i c i en t   t ha t   t he   func t iona l  H given by Eq. (5.5) be a p o s i t i v e   d e f i n i t e  quan- 
t i ty   for   admissible   per turbed  motions of the  sol id   about   the state of i n i t i a l  
s t r e s s .  

3' 

L e t  us  note  that  the  requirement  of H being a pos i t i ve   de f in i t e   func t i -  
onal may imply a s t ronger   s tab i l i ty   condi t ion   than  i s  given by p This 

touches  then upon the  question of the  necessary  conditions which w i l l  not be 
dea l t   wi th   here .  

3' 

From the above discussion we  may conclude  that  the commonly used energy 
methods y i e ld   s t ab i l i t y   c r i t e r i a   w i th   r e spec t   t o   an   ave rage   me t r i c  p There- 

fore  we may not ,  by any means, expec t   to   re t r ieve  any more information  than is 
r e t a ined   a f t e r  :his  averaging  process.  This  conclusion is a l s o   v a l i d   f o r  most 
approximate  methods  such as the  Bitz,   the  Galerkin,  and other  methods,  where 
we use sane averaging  processes  to  reduce  the  system of par t ia l  t o  a set of 
ordinary   d i f fe ren t ia l   equa t ions .  We sha l l   explore   th i s   po in t   fur ther   in   the  
sequel,  but l e t  us make f i r s t   a n o t h e r  remark  regarding  system  (5.1) and func- 

t i o n a l  H. We l e t  so lu t ion  of (5.1)  be  of a form Gi = $i(x)ePt and obtain from 

3' 

4 

(5 5) 

I f  we s u b s t i t u t e  iii = $iePt   into Eqs. (5.1), we obtain  an  eigenvalue problem 

with  eigenvalues p. From  Eq. (5.8) we  may conclude  that ,   for  €I t o  be a non- 
increasing  function of time, p must  have a nonpositive real p a r t .  

We now reduce Eqs. (5.1) t o  a set of ord inary   d i f fe ren t ia l   equa t ions .  We 
assume t h a t  ii and i t s  der ivat ives   can be expanded i n  terms of the  complete 

s e t  of eigenvectors {v (x)} i = 1,2,3, n = 1,2 ,..., -, such  that 
i -0 

i n  
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N N  

n=l m = l  

N N  

I '  n=l m=l  

and 
N N  

f o r  some N > M y  where M i s  a l a r g e   p o s i t i v e  number depending on ei; i = l Y 2 , . . . , 5  

i n   t h e  above i n e q u a l i t i e s  and ci may be made as small as we please by selec- 
t i n g  M suff ic ient ly   large.   For   such an H, Eq. (5.7) reduces  to 

N N N 

m = l  n=l  n=l 

where 

and 

'rnn re Jv C;jk.t%n,l~im,jdV 

In   ob ta in ing  (5.10) , i n   a d d i t i o n   t o   t h e  Gauss  theorem w e  have a l s o   u t i l i z e d  
t h e   f a c t   t h a t  {vi,] are so lu t ions   to  

For k ; m = 1,2,...,?4 not   ident ica l ly   zero ,  Eqs. (5.10) y i e ld  

N N 
m = 1,2, ..., N (5.11) 

which i s  a system  of  nonself-adjoint,   ordinary  differential   equations.  
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Similarly,  E reduces   to  

N a a 

where 

and 

(5.12) 

For a p o s i t i v e   d e f i n i t e  R i n  a region p3 < B; R > 0 ,  we can  f ind  an M 
such  that  H is a l s o  a pos i t i ve   de f in i t e   quan t i ty   w i th in  a r i n g  R1 < pg c a, 
where T3 is defined by 

- 

N 

n=1 

i n  a 2 N-dimensional  Euclidean  space.  Moreover, R is dependent  only upon 

si i n  i n e q u a l i t i e s  ( 5 . 9 )  and may be made as small as we please by choosing M 
large enough. From t h e   s t a b i l i t y  theorem we therefore   conclude   tha t ,   fo r  
system (5.1) t o  be s t ab le   w i th   r e spec t   t o   t he  metric p3, it i s  s u f f i c i e l t  

t h a t  3 be a pos i t i ve   de f in i t e   quan t i ty .  But vanishes   for  p3 = 0 and dz/dt  

is ident ical ly   equal   to   zero  a long any pa th   sa t i s fy ing   equat ions  (5.11). 
Therefore, by Liapunov's s t a b i l i t y  theorem  [14],  system (5.11) is s t a b l e  
when H is  a pos i t i ve   de f in i t e   quan t i ty ,  and l ikewise when H i s  a pos i t i ve  
def in i te   quant i ty .  

- 
1 

The study of s tab i l i ty   o f   the   sys tem of l i n e a r  homogeneous ord inary   d i f -  
fe ren t ia l   equa t ions  (5.10) is, however, a classical mathematical problem. 
For   the   s tab i l i ty   o f  (5.11), i t  is necessary and s u f f i c i e n t  that the   roo t s  
of the   charac te r i s t ic   equa t ion  of 15.11) have  nonpositive real par ts .  How- 
ever,   the  study of the   func t iona l  X, which i n   f a c t  i s  a statement  of  the 
energy of the  system,  can  provide  us  with a be t t e r   i n s igh t   i n to   t he   phys i ca l  
behavior  of  the  system.  Divergent  motion may occur   i f ,   f o r  a v i r t u a l  (static) 
displacement  of  the  system,  the work of the  appl ied  forces   equals   the change 
in   t he   s t r a in   ene rgy  of the system, namely, 
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or   equivalent ly  

(5.13) 

where 6 is  the   va r i a t iona l  aymbol. 

Let ua  now assume tha t  CY is  function of a real parameter y; -m < y < +LD, 
in a d d i t i o n   t o  xl, x2, and x3; u cr(x1,x2,x3; y).  Moreover, we consider a 

proportional  loading @p (x), where B is a f ini te ,   d imensionless ,  real number; 

0 4 < m. I n   t h i s  way, the  plane of 6 - y is divided  into  regions of s t a b i -  
l i t y  and i n s t a b i l i t y  by equation (5.13). The effect   of   the   l inear   viacomity 
(Eq. 5 .3) ,   in   th i s   case ,  is t o  make the   s t ab i l i t y   r eg ions  a c losed   se t  (ex- 
cept ,   possibly,   for  a s e t   w i t h  measure  zero; a f i n i t e  number of i so l a t ed  
p o i n t s   i n  this plane). 

4 

j 

The l imi t ing   condi t ion   for   the   f lu t te r  of system  (5.1), by con t r a s t ,  is 
obtained when 

where tu i s  the  frequency of steady state o s c i l l a t i o n  of the  sol id   about  i t s  
unperturbed state. The motion of the   so l id   decays   i f  H > 0 and amplifies 
i f  H3 < 0 .  3 

For  continuous  systems  with  slight damping,  Nemat-Nasser [53] proved 
that   the   f lut ter   load  parameter  of the undamped system is an upper bound f o r  
t ha t  of  the  system  with  slight damping. He also  established  the  necessary 
and su f f i c i en t   cond i t ion   fo r   s t ab i l i t y   w i th   r e spec t   t o   f l u t t e r  and s u f f i c i -  
ency condi t ions   for   s tab i l i ty   wi th   respec t   to   d ivergence  and f l u t t e r .  Based 
on energy  considerations  he  further  suggested in [53] an  approximate method 
of s t a b i l i t y   a n a l y s i s  which reduces  to  the  usual  energy  cri terion  for  the 
case of conservative  loading. A complex treatment of a c l a s s  of  one-dimen- 
sional  continuous  systems w a s  suggested  in [54]. 

For a fur ther   discussion of s t a b i l i t y  of continuous  (not  necessarily 
nonconservative)  systems,  reference  should be made t o  the   recent  work by 
Hsu [55] and by h o p s  and Wilkes ‘561. 
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CHAPTER V I  

METHODS OF ANALYSIS 

6.1  Discrete Sys terns 

6.1.1  Introduction 

The mathematical  analysis of s t a b i l i t y  of discrete  systems i s  most r ead i ly  
carr ied  out   using Routh-Hurwitz c r i te r ia   to   de te rmine   the   na ture  of eigenvalues, 
a subject  amply exp lo red   i n   t he   l i t e r a tu re ,  see, e.g., [18]. As an a l t e r n a t i v e ,  
one could  think of applying  Liapunov's  direct  method, [14], wi th   su i tab le  modi- 
f ica t ions .   In   conserva t ive   sys tems  th i s  method is  tantamount  to  the well-known 
energy  method,  but in  systems  with  follower  forces  suitable  generalizations  are 
required. Such a generalization  has been presented by Walker [57]. The ap-  
proach  has  the  advantage,  over  an  eigenvalue  analysis,  that  the manner, i n  which 
various  parameter  changes  influence  stabil i ty,  becomes much more v i s ib l e .  Below 
the  idea and examples  presented  in Ref.  [57] are  reproduced. 

L e t  us examine f i r s t  a conservat ive  discrete  dynamic system in   vec tor  form 

G + C i + K q = O  
U U N  

where q is an  n-vector of displacement, M y  C ,  K a r e  n x n matrices,  and M is  
p o s i t i v e   d e f i n i t e  and symmetric. Most ea r ly  work i s  based on energy  conside- 
r a t i o n s ,  and considers  the  so-called  "conservative" problem (K symmetric and 
pos i t ive   def in i te )   wi th   "d iss ipa t ion"   forces  (C symmetric and posi t ive semi- 
definite)  and/or  "gyroscopic"  forces (C skew symmetric) [58]. For   this  problem, 
the  total   energy 

i s  a posi t ive-def ini te   funct ion,   having  the time de r iva t ive  

Depending on whether C i s  def ini te ,   semidefini te ,   or   zero,   var ious  exact  
statements  can be made concern ing   s tab i l i ty   o r   asymptot ic   s tab i l i ty  of the 
equilibrium 2 = 4 = 0 [58]. 

" 

6.1.2 A..''Ge-ne?~lized - Energy" Function 

The genera l iza t ion   in  Ref.  [57] starts by defining  n-vectors sl = q, 

% N  

* and placing  the  system  in  the form N 
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while  assuming M = 2, d e t  IMl # 0, d e t  1K1 # 0. These  assumptions are main- 
tained  throughout. 

Consider now the  general   quadratic form 

where F ,  G ,  H, a r e  n x n matrices, F = FT, G * G . Taking the time de r iva t ive  
according  to  the  equations of state,  we have 

T 

+22 [ZF - PGM-' K - c M HI 1 1  
T -1 

The above function and i t s  der iva t ive   a re   suf f ic ien t ly   genera l   for  a f u l l  
by the methods  of  Liapunov, but are a l so   too  a t t ack  on t h e   s t a b i l i t y  problem 

complicated  to be of much prac t ica l   va lue .  It seems d e s i r a b l e   t o   s a c r i f i c e  
some g e n e r a l i t y   i f  a s ignif icant   reduct ion  in   complexi ty  would r e s u l t .  Keeping 
i n  mind tha t  when the  energy method works, i t  works very  easily,   suppose we  now 
re s t r i c t   t he   func t ion  V to  have two of the  properties which the  energy  function, 
when i t  i s  meaningful,  normally  has; namely: (1)  If C = 0,  then 9 5 0, (2) I f  
C # 0,  then 9 

F -  

H =  

depends  only upon %. These conditions imply 

G M - ~  K = [ G M - ~  KT 
0 

Thus,   the   res t r ic ted  funct ion i s  

where G and GM K a r e  symmetric, -1 

T -1 f = - 2 &  GM C %  

We note   that  GM-lC need not 

G% 

and i ts  de r iva t ive  is  

( 6 . 9 )  

be symmetric, and t h a t  f 9 0 i f  GM C i s  skew-  -1 

symmetric. We a l so   no te   t ha t   fo r  symmetric K we may choose G = M and produce 
the  energy  function,  although we need not  do so. Since  the symmetry require-  

ments on G and GM K r e s u l t   i n  (n -n) l lnear  equations  in  the  n2  elements of 
G ,  there  are  normally n independent  matrices G (producing n independent  func- 
t i ons  V) which satisfy  these  requirements.  

-1 2 

We a r e  now i n  a p o s i t i o n   t o  draw sane  conclusions: 
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Theorem 1. If there exists a matrix G such that G"% is positive de- 
finite, while G and GU-lK are symmetric and positive definite, the equilibrim 
is asymptotically stable. 

Theorem 2. If there exists a matrix G such that G"'C is positive  semi- 
definite, while G and GM'lK are  symmetric and positive definite, the equili- 
brium i s  stable. 

Theorem 3. If there exists a matrix G such  that  Gn-lC is positive de- 
finite, while G and GH'lK are tymetric but not both positive semidefinite,* 
the equilibrium is unstable. 

Theorem 4. If there exists a matrix G such that GM-lC is skew-symnetric,* 
while G and G"lK are symmetric and definite of the  same sign, the  equilibrium 
is stable but  not asymptotically stable. 

Theorem 5. If there exists a matrix G such that  GM-lC is skew-symmetric, 
while G and GM K are  symmetric,  the function V = GM K + & is an 
integral. 

-1 T -1 T 

Although the conditions of Theorems 1-4 are  only  sufficient,  not  neces- 
sary,  it seems  that in the  great  majority  of  problems one of  the first  three 
theorems  should  prove  applicable. A definiteness requirement on an n x n 
matrix results in n inequalities and, as  previously  noted,  symmetry  require- 
ments on G and GM-lK result in only (n2-n) equations in the n2 elements of G. 
Theorems 4 and 5 are  less generally applicable,  particularly when C # 0, since 
their satisfaction may  involve up  to 5 (3n2-n) equations and, for Theorem 4, 1 

up  to 2n inequalities.  Bovever,  it  may  be  noted  that  every  result  previously 
obtained by  the energy  method [ 5 8 ] ( K  is then necessarily  symmetric) is included 
here by  letting G = M. 

There are  normally n independent matrices G which satisfy  the  symnetry re- 
quirements on G and GM K. If the problem is specified  in  terms  of  parameters 
and is being  attacked  analytically,  there is often an apparent choice for  the 
n arbitrary  elements of G which simplify  the definiteness conditions on GM-lC 
or,  if GH-lC is skew-symmetric,  the definiteness conditions on G and  G"lK. 
When M is diagonal, a usable  result is sometimes found by setting diag [G] = 
diag [HI, thus  specifying n elements of G a priori. This choice is one which 
produces G = H in the absence of follower forces, and this  may  be desirable 
since the  energy function usually works well in such problems. 

-1 

.- -~ * 
A definite matrix is also  semidefinite,  as is the zero matrix. 

The zero matrix is also skew-symmetric. 
** 
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Two examples  involving  follower  forces are p r e s e n t e d   t o   i l l u s t r a t e   t h e  
use of these procedures. 

Example 1. Consider  the  system 

M{ + C4 + Ka = 0 
cy- 

where 

M =  [;' :,I , c = [  ;] Y K =  

= [.' :J 
If w e  choose diag [GI = diag [MI, G = G , T 

and 

For G " l K  to be symmetric, w e  f ind 

- kg + k2 g/m2 = kl g/ml + k3 

which implies 

2k3mlm2 
g = k m - k m  2 1   1 2  

(6.10) 

[ :: ;:.I (6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

-1 
Since GM C 0, w e   w i l l  u t i l i z e  Theorem 4. Conditions  €or  positive 

def in i teness  of G and GM K are ,  assuming m > 0 ,  m2 > 0, -1 
1 

(4 m1m2 - 8 > 0 
2 (6.16) 

(b) m2kl + mlk2 > 0 (6.17) 
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By Theorem 4 these are su f f i c i en t   cond i t ions   fo r   s t ab i l i t y ,   bu t   t hey   a l so  hap- 
pen  to  be the  necessary and suf f ic ien t   condi t ions   for   d i s t inc t   pure ly   imaginary  
eigenvalues. 

A r e s u l t  which is  immediately  apparent   f rom  this   analysis  i s  that   Propor- 
t i o n a l  damping always r e s u l t s   i n   a s y m p t o t i c   s t a b i l i t y  when the  preceding con- 
d i t i o n s  are s a t i s f i e d .  T h a t  is, i f  

C = & i + ~ K ( c @ 2 0 ,  a + P > O )  (6.19) 

then 

m-lc = CUG + B G " l K  (6.20) 

and GM-lC is p o s i t i v e   d e f i n i t e   s i n c e  G and G " l K  are p o s i t i v e   d e f i n i t e .  
Theorem 1 thus  implies   asymptot ic   s tabi l i ty .  

This i s  not   to  imply t h a t  C need  be proport ional ,   or   even  diss ipat ive,  
f o r   a n  answer t o  be obtained.  Consider  the  general matrix 

f o r  which, using  the  previous G, we have 

c3g/m2 c4+ c2g/m2 
G M - ~ C  = 

c3+ clg/ml c2+ c4g/ml 1 
(6.21) 

(6.22) 

Assuming conditions (a), (b) ,   (c ) ,   a re   sa t i s f ied ,  Theorem 1 implies asympto- 
t i c  s tab i l i ty   p rovided  

I f  (d) and (e) are sa t i s f i ed ,   bu t  one o r  more of (a), (b), (c), is  
s t r i c t l y   v i o l a t e d ,  Theorem 3 impl i e s   i n s t ab i l i t y .   S t ab i l i t y  is  assured by 
Theorem 2 when (a), (b), (c) are sa t i s f i ed   wh i l e  (d) and (e) are weakly sa- 
t i s f   i e d .  

For   cer ta in   va lues  of the  parameters, i t  is  clear t h a t  a d e f i n i t i v e  re- 
s u l t  i s  not  given by the  preceding  analysis. However, a l l  of the  preceding 
was based.on  one  specif ic   choice  for   diag [GI. Other  choices  can  be made and 
resu l t s   ob ta ined  which are appl icable   under   different   parameter   res t r ic t ions.  

It may be  noted i n   g e n e r a l  that f o r  problems  having C = 0,  Theorem 4 i s  
the   only one  of t h e   f i r s t   f o u r  theorems  having a p o s s i b i l i t y  of  success, and 
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i t  can  be  sat isf ied  only  for   systems which would be asymptot ical ly   s table   with 
the  addition of proportional damping. 

Example 2 .  Let  us  consider  the problem  discussed  in  Sect. 3.1 which should 
serve as a fair   demonstrat ion of  the  operation of the  proposed method. The 
equations  of  motion are 

~ + C ~ + K q = O  - H H N  

where 

( 6 . 2 5 )  

where d2 > 0 ,  k > 0 ,  and y = P l / k .  The parameters of i n t e r e s t   a r e  y and a, 
which relate   to   the  magni tude and d i r e c t i o n  of the  nonconservative  load. 

Choosing a general  symmetric G ,  

( 6 . 2 7 )  

( 6 . 2 8 )  

Since GM C =I 0 ,  we hope to   apply Theorem 4 .  -1 

Looking  ahead to   poss ib l e   a lgeb ra i c   d i f f i cu l t i e s  i-n the   def in i teness  con- 

d i t i o n s  on G and GM K, l e t  us  try  the  simplest   choice  for (a -1 1, a 2 ) ,  i .e. ,  one 
which produces g = 0 :  

c r , = 5 - y  
L 

a =  2 

Thus, 

G =  

and 

2 - Y  

? 0 2-y O 1 
( 6 . 2 9 )  

(6 .30 )  

(6.31) 
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We see t h a t  G is p o s i t i v e   d e f i n i t e   f o r  y < 2 .  A l s U i n g   t h i s   r e s t r i c t i o n ,  we 

f i n d   t h a t  G d ' K  is posi t ive  def ini te   provided 

1 + (1 -a )  (y - 3 ~ )  > 0 2 (6 .32 )  

The b i fu rca t ion   p lo t   i n   t he  (y,cr) plane is shown in  Fig.  6 . 1 .  We have j u s t  
obtained  the  shaded  region below y = 2 as a reg ion   of   s tab i l i ty  by Theorem 4 .  
However, e igenvalue  analysis  [ 2 2 ]  shows the   en t i r e  shaded region  to   be  the 
exact region  of   s tabi l i ty .   Since  our  theorems are only  sufficient,   not  neces- 
sary,  i t  may be  worth-while  to  try  another  choice  for G. We see that   the   pre-  
vious  choice  for  G f a i l s  a t  y = 2 because a2 = 2 - y is required  to  be posi- 

t i v e ,  a necessary   condi t ion   for   pos i t ive   def in i teness  of our  previous G. Let 
US s imply  reverse   our   def ini t ion  of  a2 8nd choose 

a 1 = 5 - y  

cy2 = y  - 2 

(6 .33 )  

f o r  which 

g z ( y - 2 )   ( ~ - 5 ) / C l  - 2 ( 1 - ~ ) ~ ]  ( 6 . 3 4 )  

some tedious  calculat ions show tha t   the   condi t ions   for   pos i t ive   def in i teness  

of G and Gl4 K are now -1 

2 < y < 5  

4 1  - 32y + w ( l w )  + 8y (1-a) > 0 2 

( 6 . 3 5 )  
7 - 4 y + 2 a y > O  

1 + (1-a) (y -3y) 7 0 
2 

These conditions  define  the shaded area above y = 2 i n  Fig. 6.1. Thus,  with 
the  exception of the   l ine  y = 2 ,  we have  determined the  ent i re   region of the 

produces a s table   equi l ibr ium. parameter  plane which 

We may perform a spec ia l   i nves t iga t ion   fo r  y = 2 .  We have  then 

( 6 . 3 6 )  

where the symmetry of GH K implies -1 

(6.37) 
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Choosing cy1 = 1, we f ind   tha t   the   condi t ions   for   pos i t ive   def in i teness   o f  G 

and GM K are now tha t   there   ex is t   an  cy2 > 0 such  that  -1 

(3 -4a )2  - !kt2 > 0 

( b - 2 ) [ ( 3 - 4 ~ r ) ~  - 9a2] 

( 3 - b I 2  - !kt2 (3-4cu) > 

> o  

0 

(6.38) 

These  can be s a t i s f i e d  by choosing 9Cu2 < ( 3 - 4 ~ ~ ) ~ ~  provided cy > 2, x. This 

completes  the  determination  of  the  entire  region  of  stabil i ty  in  the  parameter 
plane. Again we note   that   the   addi t ion of  any  form  of proportional damping 

1 3  

C = 7pi + B K ( W  0 ,  7 + B > 0 )  ( 6 . 3 9 )  

l eads   to   asymptot ic   s tab i l i ty   o f   the   equi l ibr ium by Theorem 1, provided (y,cy) 
is  in   the  shaded  region  of  Fig. 6.1. The d i f f i c u l t y  of  reaching  this  general  
conclusion by eigenvalue  analysis need not  be  dwelt upon. 

6.1.3 A General Approach 

When problems are encountered  for which there  seems no apparent  choice 
for   the  n arbi t rary  e lements  of G which  produces a usab le   r e su l t ,   o r   i n  which 
the  order is  so grea t  as to   require   the use of a computer, i t  may be d e s i r -  
able   to   apply  the method i n  i t s  fu l l e s t   gene ra l i t y .  A systematic  approach 
might be as follows: 

Define  diag [Gi] = e where -i ' 

Determine G by the symmetry i 
n 

Set  G = 1 aiGi 

Note t h a t  GM-IK = 1 cyiGiM K 

i= 1 n 
-1 

i= 1 

GM-lC = aiGiM C 
-1 

i=l 

Determine  whether a vector g e x i s t s  such t h a t  GM C is  pos i t i ve   de f i -  
n i t e   o r   s emide f in i t e ,   i f  so, use Theorems 1, 2 ,  o r  3 .  

-1 
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6) Determine  whether a vector cy exists such t h a t  GM C is  skew-symmetric; -1 
i f  so, use Theorem 4 and/or-5. 

6.1.4 Exceptional Cases 

Although i t  is  t r u e  tha t   there   a re  problems f o r  which there  exists no 
matrix G sat isfying  the  condi t ions  of  any  of t h e   f i r s t   f o u r  theorems,  implying 
s t ab i l i t y   canno t  be determined i n   t h i s  manner, i t  seems tha t   there  i s  of ten 
something  quite  unusual  about  such  problems. One such i s  the  following: 

where m > 0 ,  m2 > 0 ,  and k m # k2ml. 1 1 2  

Using the most general form f o r  symmetric G,  we have 

and 
a k m  -1 1 1 2 gk2ml 

= % [ gklm2 a 2 k 2 m j  

(6.41) 

(6.42) 

Symme t r y  i m p 1  i e  s 

g = o  (6.43) 

and theref  ore 

(6.44) 

and i t  i s  imposs ib le   to   sa t i s fy  Theorems 1 or 3 f o r  any choice of (al, a2) .  

Theorem 4 can  be  sat isf ied by choosing a1 = ml, a2 = m2, provided GM K -1 

is  then  posi t ive  def ini te .   Since 

(6.45) 
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we see   t ha t  Theorem 4 impl ies   s tab i l i ty   p rovided  kl > 0, k2 > 0. However, 

e igenvalue  analysis   assures   s tabi l i ty   provided  only  that  

klm2 + k2m2 > 0 

2 klk2 > - c 

(6.46) 

which allow the   poss ib i l i t y  of  one  of the k actually  being  negative.  However, 

noting  that   our GM = I, we see t h a t  Theorem 3 a s s u r e s   t h a t   i n s t a b i l i t y  w i l l  
occur   i f  C i s  increased by any pos i t ive   def in i te   mat r ix  and e i t h e r  of the k 

is negative.  That i s ,  when the k are   in   the   range   for   s tab i l i ty   p red ic ted  

by eigenvalue  analysis,   but  not  in  the  range  for which  any  of o u r   s t a b i l i t y  
theorems  apply,  the  addition of any  complete d i s s i p a t i o n   l e a d s   t o   i n s t a b i l i t y .  
&I the  other  hand, when the  ki   are  in  our  al lowable  range, k > 0, k2 > 0 ,  the 

addi t ion of any  complete d i s s ipa t ion   l eads   t o   a sympto t i c   s t ab i l i t y  by Theorem 
1, a much more n a t u r a l   r e s u l t .  

-1 i 

i 

i 

* 
1 

6.1.5 Remarks 

Although each of the examples was begun under  the  assumption of no d i s -  
s ipa t ion  and we i n i t i a l l y   a p p l i e d  Theorem 4, t h i s  was only  for  the  purpose  of 
i l l u s t r a t i n g   t h a t  we can make qua l i ta t ive   s ta tements   about   the   e f fec ts  of 
various  types of damping v i a  Theorems 1 and 3. In   p rac t i ce ,  Theorem 4 is  the 
most d i f f icu l t   to   use   and ,   in   the   rea l   wor ld ,  i t  i s  the   l eas t   l ike ly   to   apply .  
When the  l inear   approximation  indicates   s tabi l i ty  which i s  not  asymptotic, 
t h e   s t a b i l i t y   o r   i n s t a b i l i t y  of the  physical  system is  determined by parameter 
errors   and/or  any s l i g h t   n o n l i n e a r i t i e s  [58,15]. Therefore, Theorem 4 i s  use- 
f u l   i n  problems which are   pr imari ly  of academic i n t e r e s t .  

These  remarks  do  not  generally  apply t o  Theorem 2 ,  although i t  too  con- 
cludes  only s t a b i l i t y .  If   the  conditions of Theorem 2 a r e   s a t i s f i e d  and those 
of Theorem 1 are not ,  one can  often s t i l l  conclude  asymptot ic   s tabi l i ty  by use 
of an  invariance  pr inciple  due to  LaSalle [59]. This  usually  requires a de- 
ta i led   ana lys i s  of   the  different ia l   equat ions,  however. ** 

Theorem 5 allows the  rapid  generation of up to n i n t e g r a l s ,   p a r t i c u l a r l y  
when C = 0, and so permits a possible   reduct ion  in   the  order  of the  system 

* 
This is a wel l  known resul t   concerning  the phenomenon of gyroscopic 

s t a b i l i z a t i o n  [58]. 
*Jr 

I n   p a r t i c u l a r ,  one  must determine  whether  any  invariant  set  other  than 

(q , q ) = (0, 0 ) ,  is  contained  in  the set defined by % GM C % = 0. I f  

not,   the  conditions of Theorem 2 imply asymptot ic   s tab i l i ty  of the  equilibrium 

T -1 
-1 2 ” 

c591. 
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from  2n t o   a s  low as n. However, t he   a lgeb ra i c   d i f f i cu l t i e s  of  such  reduction 
may be  considerable. The primary  use  of Theorem 5 i s  to  determine  "constants 
of the motion," i n  problems i n  which these are of some i n t e r e s t .  

6.2 Continuous  Systems 

6.2.1 Introduct ion 

The class of nonself-adjoint  eigenvalue  problems i s  not  as  extensively 
invest igated as t h a t  of se l f -ad jo in t   ones  and s p e c i a l   a t t e n t i o n  must  be paid 
to  the  mathematical  methods  used i n  determining  the  eigenvalues. A j u s t i -  
f i c a t i o n  of applying  the  Galerkin method to  bars  subjected  to  nonconservative 
loads was offered by Leipholz [60] and the  convergence of t h i s  method, a6 ap- 
p l i e d   t o   t h e  same problems, was studied by him i n  Ref.  [61]. Leipholz  also 
used'  the method of f in i te   d i f fe rences   in   eva lua t ing   the   e igenvalue  of an 
e las t ic   bar   subjec ted   to  a uniformly  distributed  tangential   load [62]. H e  
extended  the  appl icabi l i ty  of the  Galerkin method t o  a broader class of li- 
near  nonself-adjoint  eigenvalue problems  [63]  than  those  studied i n  Ref. [62]. 
This class contains a l l  eigenvalue  problems  which arise from o r i g i n a l l y   s e l f -  
ad jo in t  problems by addi t ion of a l i nea r   d i f f e ren t i a l   exp res s ion  which  de- 
stroys  the  former  self-adjointness.  The convergence of the  Galerkin method 
for   nonconserva t ive   s tab i l i ty  problems  of p l a t e s  and s h e l l s  was studied by 
Leipholz i n  Ref. [64]. A discussion of the  Galerkin method as   appl ied  to  
systems  with damping i s  discussed by Leipholz i n  Ref.  [65]. 

Levinson  [66]  has shown t h a t   f o r   c e r t a i n  problems the  Galerkin method 
converges  for a broader  class of t r i a l   func t ions   t han  assumed by Leipholz. 
Further,  Levinson  extended  Hamilton's  principle and the  Ritz method such as 
t o  make them applicable  to  nonconservative problems. 

The Ritz  method in   nonvariat ional   formulat ion w a s  applied  to  nonconser- 
vative  problems by Marchenko [67].  Both the  Ritz and the  Galerkin methods 
have  been  extended f u r t h e r  by Leipholz [68]. In   pa r t i cu la r ,   t he   cond i t ions  
t o  be f u l f i l l e d  by the  coordinate  functions  are weakened; these  functions 
need not  satisfy  the  dynamical boundary conditions and under  certain  circum- 
stances  not  even  the  geometrical  ones.  This  study  includes  also some consi- 
derat ions of convergence. 

I n   t r e a t i n g   d i s s i p a t i v e  dynamic systems  of  mathematical  physics,  which 
are governed by nonself-adjoint   l inear   operators ,  i t  i s  o f t en  found conveni- 
ent  to  introduce  the  adjoint  system (or  f i e l d )  and to  consider  formally a con- 
servat ive  process  [69],  [70]. The o r ig ina l   f i e ld   con ta ins  an  energy  sink, and 
in   the  adjoint   f ie ld   an  energy  source of the same strength is  incorpora ted   in  
order   to  make the combined f ie ld   conservat ive.  

It i s  of in te res t   to   no te   tha t   the   no t ion  of the   ad jo in t   f ie ld   can  be in- 
troduced  also  in  treating  nondissipative,  nonconservative  systems, i.e., dy- 
namic sys tems  subjec ted   to   c i rcu la tory   forces .   In   par t icu lar ,   in   s t ruc tura l  
systems  subjected  to  follower  forces,  the  consideration of ad jo in t   fo rce   f i e lds  
leads  to  interesting  consequences.   Indeed,  for  this class of nonconservative 
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systems,   both  the  or iginal   f ie ld  and i ts  a d j o i n t   f o r c e   f i e l d  are associated 
with  energy  sources [71], and yet  the  combination of these two f i e l d s   r e s u l t s  
i n  a conservative one. 

As an example, consider  the Beck problem [33], i.e., a cant i levered elas- 
t i c  bar  subjected a t  i t s  f r e e  end t o  a compressive  follower  force (see Fig. 
6.2). The equation of motion and the boundary conditions are 

y e 0 
ax a t  x = O  (6.47) 

2 3 h = a y = o  
ax2 ax 3 a t  x = l  

where dimensionless   quant i t ies  are employed. We now cons t ruc t   the   ad jo in t  
boundary-value  problem by considering a funct ion z = z(x, t ) ,   def ined  for  
0 5 x < 1 and t 2 0 ,  such  that   the  following  equation of  motion and boundary 
conditions a t  x = 0 are s a t i s f i e d   i d e n t i c a l l y :  

4 - a = + F -  a2z + & E 
ax ax2 at2 

We then  seek boundary condi t ions  for  z ,  a t  x = 1, such  that  

1 4 2 2 1 4 2 2 
a z  a Z  

0 ax  ax a t  0 ax  ax a t2  
s z ( Y + F % + % ) d x = f   y ( % + F ~ + - ) d x  

(6.48) 

(6.49) 

I f  w e  now in t eg ra t e   t he   r i gh t   s ide  of the  preceding  equation by parts and use 
boundary cond i t ions   i n  Eq. (6.47), we immediately  obtain  the  following boun- 
dary  condi t ions  for  z a t  x = 1: 

2 3 - a i + F z = O  - a Z  
3 ax a t  x = l  

ax  ax 
(6.50) 

Equations (6.48) and (6.50) now define  the  system  adjoint   to   the Beck problem. 
The inspection of  Eqs. (6.48) and (6.50) readi ly   reveals   that   they  descr ibe 
the Reut  problem [8] sketched i n   F i g .  6.3. 
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It was shown i n  Refs. [8] and [33] that   both  systems  depicted  in  Figs. 
6.2 and 6.3 l o s e   s t a b i l i t y   f o r   t h e  same value of the  load, i.e., Fcr = 20.05. 
For F > Fcr, energy is  t ransfer red   to   the   bar  by the work of the  applied 

force,  which in  turn  increases  the  conservative  energy  of  the  system, making 
the  response unbounded ( f l u t t e r ) .  Thus, bo th   fo rce   f i e lds  are associated  with 
source  of  energy. However, i t  can  be  readily  seen,  both on mathematical and 
physical  grourds (see Fig. 6.4), t ha t   t he  combined system is conservative, 
and the bar shown i n   F i g .  6.4 is incapable of l o s i n g   s t a b i l i t y  by f l u t t e t .  
Indeed ,   the   loss   o f   s tab i l i ty   in   the  combined case w i l l  occur by divergence 
(buckling,  attainment of another  equilibrium  configuration).   In  conclusion, 
i t  should be mentioned that   adjoint   systems  can be constructed  a lso  for   the 
nonconservative  problems  discussed i n  Ref s. [SI, [72] and [73]. 

Adjoint  systems have  been a l s o  examined i n  Ref. [74]. The p o s s i b i l i t y  
of construct ing  adjoint   equat ions  for   the  purpose of  developing  approximate 
methods i n   a e r o e l a s t i c i t y  similar to  energy methods w a s  ind ica ted   a l ready   in  
Ref. [75]. The usefulness   of   adjoint   systems  in   solving  s tabi l i ty  problems 
of elastic continua  with  follower  forces was exh ib i t ed   i n  Ref. [76], as de- 
scribed below. 

6.2.2 S t a b i l i t y  o f  an Elastic Continuum 

Let us  consider   an  isotropic ,  homogeneous, elastic solid  occupying a vo- 
lume V bounded by a f i n i t e   s u r f a c e  S. It w i l l  be assumed t h a t  on  one p a r t  of 
the boundary  of the   so l id  So the  displacements are prescribed so as to  pre-  

clude a r i g i d  body motion. The body is a t  rest and i n  a state of i n i t i a l  
stress uij, i, j = 1,2,3, due to  the  applied  nonconservative  (follower)  forces 

on  the  surface S - So of   the  sol id .  To s tudy   t he   s t ab i l i t y  of t h i s  rest po- 

s i t ion   the   sys tem is s l igh t ly   per turbed  and the  type of ensuing  motion is 
studied.  Referred  to  an  orthogonal  Cartesian  coordinate  system x Bolotin 

[8] has  obtained  the  following  equations  for  the  ensuing motion: 
j y  

a% =i 

'ijkk 5 "j + 'Ojk nj  
"i on S - 

(6.51) 

(6.52) 

Xi = 0 on S 
0 

10 1 

I 

(6.53) 

(6.54) 



In Eqs. (6 .51 ) - (6 .54 ) ,  p is t he  mass densi ty ,  U is  the  displacement 

vec tor  measured  from the  undisturbed state and n.  is t he  outward pos i t i ve  

u n i t  normal vec to r   t o  S. No body forces  are assumed t o  be  present and B is  
a parameter  associated  with  the  magnitude  of  externally  applied  surface trac- 
t i o n s .   I n  Eq, (6 .54 ) ,  X and p are Lamt?'s cons tan ts  of e l a s t i c i t y .  The re- 
peated  indices are sumed  over   the  range  of   their   def ini t ions and  p are the  

components  of per turba t ions  of the   appl ied   sur face   t rac t ions  arad t h e i r  forms 
w i l l  depend on  the  behavior  of  the  nonconservative  forces. They w i l l  gene- 
r a l l y  be  homogeneous funct ions of  displacements and t h e i r   d e r i v a t i v e s   w i t h  
respect  to  both  space and time. In   the   p resent   s tudy ,  however, i t  su f f i ces  
t o  restrict p to  the  following  expression: 

J 
J 

J 

i 

- at i  
j 

P i  = aijUj + bj on S - 
where a i j  and  b are coe f f i c i en t s  which a r e  .I independent 

i t s  de r iva t ives -bu t   i n   gene ra l  are functions  of spatial 

(6 .55 )  

of the   vec tor  u and 

coordinates  x 
j 

1' 
We may assume a solution  of  the above  boundary value  problem i n   t h e  form 

which resu l t s   in   the   fo l lowing  eigenvalue problem: 

i = (-1) 1/2 

- a a% a aUi ) 
ax ('ijkA 5 + (Ojk - Aui = 0 i n  V 1 

(6 .56 )  

a% hi aUi ) 
' i jk l  5 j + B'jk j 

n  n = B (aijuj+ b - ax on S - (6 .57 )  
j 

u = O  o n S  i 0 
(6 .58 )  

A = -  w 2 
(6 .59 )  

Equations (6 .56 ) - (6 .58 )  c o n s t i t u t e  a nonself-adjoint homogeneous system 
and s t a b i l i t y  of t he   so l id  w i l l  be  governed by the   charac te r  of the  eigen- 

values  A*, m - 1,2, .. .QD, fo r   non t r iv i a l   so lu t ions .  In view of t h e   f a c t   t h a t  
the  appl ied  surface  t ract ions are not   der ivable  from a po ten t i a l ,  i t  is  not  

possible   to   express   the  e igenvalues  A i n   t h e  form  of a r a t i o  of two pos i t ive-  m 

d e f i n i t e   i n t e g r a l s ,  and thus  the  usefulness   of   var ia t ional   pr inciples  seems 
dubious i n   t h i s  case. 
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6.2.3 The Adjoint System 

By construct ing an adjoint  system by means of  certain  mathematical rela- 
t i ons   ana logous   t o   t he   de f in i t i ons   i n   t he   t heo ry  of ord inary   d i f fe ren t ia l  
equations, A MY be  expressed i n  terms of t he   o r ig ina l  and the   ad jo in t  vari- 
ables,  and as a consequence A w i l l  assume a stat ionary  value.   In   the  theory 
of ordinary  different ia l   equat ions,  a system  adjoint  to  one  governed by a d i f -  
f e ren t i a l   equa t ion  and  boundary condi t ions may be  constructed  formally by re- 
peated  integrat ion by p a r t s  [77]. Being guided by this observation we examine 
the  problem 

(6.60) 

u* = o on so i (6.62) 

as   being  possibly  adjoint   to   that   g iven by Eqs. (6.56)-(6.58). 

a funct ion of b and i ts  der ivat ives .   I f   an  adjoint   system i s  t o  be  de- 

fined  through  equations  (6.60)-(6.62),  one must ob ta in  c by solving a cer- 

t a i n  homogeneous integral   equat ion  on  the  surface S - So. The above-mentioned 

integral   equat ion  reduces  to   sat isfying  the  fol lowing:  

c i J  is 
1' uj  

i j  

(6.63) 

Expression (6.63) involves  three  independent  equations  in  nine unknown 
quan t i t i e s  c and thus  an  adjoint  system i s  not  uniquely  defined [77]. As 

a consequence  of Eq. (6.63) the  following  holds: 
i j  

(6.64) 

This  expression  appears  to be similar t o  Maxwell's r ec ip roc i ty   r e l a t ions  
in   conserva t ive   sys tems,   in  which case ui - = ui. * The bracketed terms a r e  rc- 
cognized t o  be resu l tan t   forces   assoc ia ted   wi th   the   o r ig ina l  and the   ad jo in t  
systems,  respectively. 
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and 

ing 

and 

Now let  A , m = 1,2,...-, be  the  eigenvalues of equations (6.56)-(6.58), 

fp, m = 1,2,...-, those of equations (6.60)-(6.62), while  the  correspond- 

m 

- - A**" Jv uimu:n  dV (6.65) 

Therefore, 

(Am- A*") ui dv =. 0 (6.66) 
V 

A t  t h i s   po in t  we  wish  to  apply  the  argument  of  Roberts  [77] t o  prove 

tha t   t he  sets of eigenvalues {A"} and {A*"] are iden t i ca l .  Let us  suppose 

t h a t  {Arn] and {A**"] are no t   i den t i ca l  sets, then 

(6.67a) 

and for   the   spec ia l   case  when m = n, 

Jv u*imuim dV = 0 (6.67b) 

I f   t h e   s e t  of eigenvectors {u."] i s  complete, Eq. (6.67b), together  with 
1 

Eq. (6.67a), would imply t h a t  u y  i s  ident ica l ly   zero ,  which I s  not   nont r iv ia l .  

Hence the two sets of  eigenvalues are ident ica l .   Also ,   s imi la r ly   to   the   p ro-  
pe r ty  of orthogonality of p r inc ipa l  modes in   t he   t heo ry  of small v ib ra t ions ,  

Eq. (6.67a) revea ls   tha t   the  two sets of eigenfunctions {u "] and {u*"] are 

bi-orthonormal, i.e., each  function of e i t h e r  set is orthogonal  to  every mem- 
ber of the  other  set except  those which  belong t o   t h e  same eigenvalue. 

i 1 
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From (6.65) i t  a lso   fo l lows   tha t  

(6.68) 

L e t  us consider now t he   e f f ec t   on  Am due t o   i n f i n i t e s i m a l   v a r i a t i o n s  

6ui and 6ui which are arb i t ra ry   except   tha t   they   sa t i s fy   the  boundary  con- 

d i t i o n s  (6.57),  (6.58)  and  (6.61),  (6.62).  Therefore, 

m *m 

6Am = - (611- Am612) 1 

=2 

- ( u ~ 6 u ~  + u;"bui">} dV (6.69) 

Equation (6.69) reduces ,   a f te r   appl ica t ion  of the  divergence  theorem 
and s a t i s f a c t i o n  of  boundary condi t ions,   to  

Equation (6.70) i s  c l e a r l y  a useful  version  of a v a r i a t i o n a l   p r i n c i p l e  

and impl i e s   t ha t   i f  Eqs. (6.56) and (6.60) are obeyed, SA" i s  zero  with  an 

accuracy  of f i r s t   o r d e r   f o r  a l l  small a r b i t r a r y   v a r i a t i o n s  6u and 6ui 

t h a t   s a t i s f y  the boundary conditions (6.57),  (6.58) and (6.61),  (6.62), 

m *m 
i 
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respectively.  Thus a defini te   s ta tement   can  be made regarding  the  error   in-  
volved in   s t i pu la t ing   t ha t   t he   e igenva lues  are s ta t ionary  values .  

6.2.4 An Approximate Method of   S tab i l i ty   Analys is  

The extremum property  of  the  eigenvalues Am, as expressed by Eq. (6.70), 
sugges ts   an   approximate   p rocedure   for   the i r   de te rmina t ion ,   in   the   sp i r i t   o f  
approximate  methods for   self   -adjoint   systems  based  on  var ia t ional   pr inciples .  

We may select two sets of t r i a l  functions Ui (al, a2,...) and Ui (al, cr2,...) 
which sa t i s fy   the   appropr ia te  boundary conditions and contain  undetermined 

parameters a and a An approximate  expression of the  eigenvalues Am is 

obtained, by using Eq. (6.68), as a funct ion of these  parameters. A s t a t i o n -  

ary  value of A is  then  obtained by determining  the  parameters from equations 
of the  type 

m +m * * 

* 
j j '  

m 

which i s  reminiscent  of  the  Rayleigh-Bitz  procedure  for  conservative  systems. 

6.2.5 I l l u s t r a t i v e  Example 

I n   t h i s   s e c t i o n  we  wish  to  apply  the  approximate method discussed above 
t o   i n v e s t i g a t e   t h e   s t a b i l i t y  of equilibrium of a cantilevered  bar  subjected 
t o  a follower  load. The governing  equations of motion may be expressed as 
P I  

d u  4 

dx  dx 

- 4 + F L y - w u = O ;  2 2  O s x s l  

d u   d u  2 3 

dx2  dx 3 
- = -  = O  a t x - 1  

(6.71) 

(6.72) 

I n  Eqs. (6.71) and (6.72),  dimensionless  quantities are employed and w 
denotes  the  frequency of o s c i l l a t i o n .  The equations  of  an  adjoint  system  of 
t h i s  problem,  which was f i r s t   d i s c u s s e d   i n  Ref.  [78], a r e  as follows: 

d u  
4 dx  dx 

4 *  d2u* - + F 2 - w2u* = 0 (6.73) 
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* t x = O  

(6.74) 
2 d3u* - u* + Fu* I - 
2 3 +*dx du* = o at  x = 1 

dx dx 

The eigenvalue w2 in the two problems will be  the  name  as  established in 
general in the previous section, and we wi8h t o  determine it  approximately. 
We assume,  then,  that u and u* may  be written  in the  form: 

N 
u* = 1 

(6.75) 

(6.76) 
n=l 

where  u u* are certain assumed  functions of x  which  satisfy  the  boundary 
conditions (6.72) and (6.74), respectively, and cyny cyn are  constants  to  be 
determined as  discussed. We multiply (6.71) by u* and integrate  over  the 
length. If we substitute  the  expansions (6.75)  and  (6.76), the  following 
relation is  obtained: 

ny n * 

where 

1 4 2 
un 

*mn = J 0 U: (z + F 2  dx un) dx 

I 

Bmn = 0 u>ndx 

('6.77) 

To obtain the  best  possible  result, we must  now  seek an extremum of the 
expression  for w2 considered as a  function of  the  parameters cy and cyn. A * 

n 
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simple and familiar vay would be t o  treat w2 as a Lagrangian  undetermined 
mul t ip l i e r  and seek   d i rec t ly   the   s ta t ionary   va lue   o f   the   fo l lowing:  

N N 
(6.78) 

m,n=1 m, n=1 

by requi r ing   tha t  

Since u and u* are f u n c t i o n s   t h a t   s a t i s f y   t h e   a d j o i n t   r e l a t i o n s   i n   t h e  
sense  discussed  before, i t  is  a simple matter t o  show t h a t  a1/Mm and aI/&ym 
would r e s u l t   i n  two matrix r e l a t i o n s  which are ad jo in t   to   each   o ther  and 
thus  they would yield  ident ical   e igenvalues .   Therefore ,   in   the  sequel   only 
the   fo l lowing   re la t ion  w i l l  be considered: 

s = o  a1 
m 

(6.79) 

Equation (6.79) is a homogeneous, l inear ,   a lgebra ic   equa t ion   in  an and, 

therefore,  a non t r iv i a l   so lu t ion   ex i s t s   on ly   i f   t he   de t e rminan t  formed by 

the   coe f f i c i en t s  of a vanishes.  This results i n  a polynomial  equation  for 

u) which represents  approximately  the  frequency  equation of the  system. 2 n 

Let  us  consider  the  following  specific t r i a l  funct ions  with N = 2: 

4 
u = cy 1 (x2- 5 x3 + x 6 ) + CY2 (x3- x4+ 5 x5) 

u*=.:(x 2 - 2(F2+4F+24) x3 + 

F2+ 6F + 72 

3 2(F2+12F+120 ' { x - F2+ 16F + 24; 

F2+ 12 

F2+ 6F + 72 

(6.80) 

x4 + F2+ 6F -t 72 

F2+  16F .t 240 
(6.81) 

Functions (6.80) and (6.81) s a t i s f y   t h e  boundary conditions (6.72) and (6.74), 
respectively.  Following  the  procedure as discussed  before,  we obta in   the  
frequency  equation: 

108 



where 

ell = -  - A + -  B + -  - - 4 4 FA  FB 
3 5 70 60 

0 1 2 = l - - A + - B + + " -  6  6  F 2FA  FB 5  5 10 35 + 28 

r a l - A A ' + - B ' + - - -  2 F A I F + = B ' F  1 % 1 5 3 30 105 

103 43 
1680 840 1800 712 

- - - + - A "  79 B 

721 = - - 31 + 177 
336 (42)(54) " - (18)(60) 

73 B '  

722 = - 840 +- 1800 *' - - 43 79 
495 
19 B' 

A =  2(F2+ 4F + 24) 

F2+ 6F + 72 

B =  F2+  12 

F2+ 6F + 72 

A '  = 2(F2+  12F + 120) 

F2+ 16F + 240 

B'  = F2+ 6F + 72 

F2+  16F + 240 

Equation (6.82) w i l l  y i e l d   d i s t i n c t  real root$  for  vanishing  F,  and when 
F is  increased  the two roo t s  w i l l  coalesce a t  the c r i t i ca l  value F = Fcr beyond 

which (6.82) w i l l  y ie ld  complex roots.  By trial and e r r o r  Fcr is computed t o  

be 19.45, whereas a more prec ise   ca lcu la t ion  by  Beck [33] y ie lds  Fcr = 20.05. 

Inc iden ta l ly ,   i f  one  uses  only  the trial funct ion (6.80), t he  method of 
Galerkin  yields  Fcr = 20.6. This r e s u l t  w a s  f i r s t  computed  by Levinson [66]. 

A similar approximate method of s t a b i l i t y   a n a l y s i s  was worked out  inde- 
pendently  of  the  above by Bal l io  [79]. 
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6.3  Enerny Considerations 

It appears   appropriate   to   discuss   energy  considerat ions  in   the  context  
of  methods  of analysis,  because  such  considerations, as i n   t h e  class of  con- 
servative  systems, may lead  to   the  es tabl ishment  of approximate methods  of 
analysis .   In   addi t ion,   energy  considerat ions may be   usefu l   in   der iv ing   the  
d i f f e ren t i a l   equa t ions  of motion  (as well as the  boundary conditions) a d  t o  
provide   addi t iona l   ins ight   in to   cer ta in   aspec ts  of i n s t a b i l i t y  phenomena. 

As compared t o   t h e   v a s t  amount of l i t e r a t u r e  concerned  with  s tabi l i ty  
of  mechanical  systems  with  follower  forces, i t  is somewhat su rp r i s ing   t o  
observe  that   only few studies   contain  energy  considerat ions.  While inves t i -  
gat ing  the dynamics  of a r t icu la ted   p ipes ,  Benjamin [80 ]  invoked  Hamilton's 
p r inc ip l e  and discussed  the  energy  t ransfer   to   the system. I n  Ref. [71] an 
extension of the  usual  energy method was proposed,  such  as  to make i t  appl i -  
c a b l e   f o r   t h e   s t a b i l i t y   a n a l y s i s  of c i rculatory  systems  with and without 
velocity-dependent  forces. Energy considerat ions formed the   bas i s  of der iving 
equations of motion i n  systems  with  fol lower  forces   in  Ref.  [81]. 

Energetic and  thermodynamic c o n s i d e r a t i o n s   i n   s t a b i l i t y  of conservative 
and nonconservative  systems  were  discussed i n  Ref. [82]. I n  Ref. [83] an ap- 
proximate  energy method fo r   f i nd ing   t he   r e l a t ionsh ip  between the  force  para- 
meter and the  amplitude of s t eady- s t a t e   o sc i l l a t ions  of nonlinear,  nonconser- 
vat ive,  autonomous  systems was sugges ted .   S tab i l i ty   c r i te r ia   on   the   bas i s  of 
"equivalent  energy"  conditions  were  established i n  Ref. [21]. 

110 



CHAPTER VI1 

POSSIBILITIES OF PHYSICAL REALIZATION 

7.1 Introduction 

It is a peculiar common feature of much published analytical work on the 
dynamics and stability  of mechanical systems with follower forces,  that the 
possible physical origin of such forces is not  mentioned. The follower forces 
are introduced  into  the analysis either  through a sketch, with forces being 
merely.indicated by  arrows, or  through a specified functional dependence of 
the forces on generalized  coordinates. Thus the problem is reduced  immediately 
to a mathematical analysis and  the  relationship to mechanics (as a branch  of 
physics or engineering)  becomes  most tenuous. The motivation for much of  this 
type  of work appears to have been sheer  curiosity in determining  the  sometimes 
unexpected  behavior  of an imagined  system, rather than an explanation of ob- 
served  phenomena. 

This clearly  unsatisfactory state of imbalance in the  development of an 
area  of  applied mechanics can be  rectified by  paying, as a first step, atten- 
tion to  the possible physical origin of  the follower forces which are  intro- 
duced  into  the analysis and  building, as a second step, actual demonstration 
models,  to  be  followed by a quantitative experimental program. 

Let  us discuss in this Chapter  some  possible origins of  follower  forces. 
If the mechanical system  should be able to lose a position of  equilibrium 
through oscillations with increasing  amplitudes, a source  of  energy  should 
be  coupled, through  the  follower  forces,  to  the  system. In one category of 
problems involving  rotating  shafts  this  energy  is  supplied by  the driving 
motor and stability  is  lost by lateral  oscillations. This category of prob- 
lems is deliberately  not  covered in this report. 

In another  category,  the  energy is supplied through a moving  fluid  to 
the mechanical system. If the  fluid surrounds the mechanical system whose 
stability is being  studied,  the  problem  belongs  to  the  broad  and  technically 
most  significant area of  aeroelasticity. The kinetic  energy  of a fluid can 
be  transferred  to the system  also  through internal flow in flexible pipes and 
by means of  impinging .jets. Some  of these possibilities will be  discussed 
presently. 

It is conceivable that other forms of  energy, such as,  e.g., chemical 
and electro-magnetic energy,  could constitute appropriate sources which, 
under suitable conditions of  coupling,  could  induce flutter-type instabili- 
ties. Among all  these  possibilities,  the  author  is aware only  of  some  recent 
work on instability  (including  flutter)  of  bars  induced by radiant heat, as 
mentioned in Sect. 7.4. 
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7.2 I n s t a b i l i t y  Modes of  Cantilevered Bars Induced bv Fluid Flow  Through 
Attached  Pipes 

7.2.1 General 

Let us  discuss,  as an example, t he   p rob lem  s t a t ed   i n   t he  above  heading. 
This   par t icu lar  example has  been  chosen,  because  various  types  of  instabili- 
ties occur i n  a r icher   var ie ty   than ,  e.g., i n  a s ingle ,  axi-symmetric f l e x i b l e  
pipe  conducting  f luid,  a system  discussed i n  Chapter V I 1 1  s ince  some ac tua l  
experiments  have  been  reported. It w i l l  be shown that a cant i levered  bar  
having two axes of synanetry may l o s e   s t a b i l i t y  by e i ther   to rs iona l   d ivergence ,  
t o r s iona l   f l u t t e r   o r   t r ansve r se   f l u t t e r ,   bu t   no t   t r ansve r se   d ive rgence .  The 
Coriol is   forces   can have e i t h e r  a s t a b i l i z i n g   o r  a des t ab i l i z ing   e f f ec t   on  
bo th   t he   t o r s iona l   f l u t t e r  and the  t ransverse  f lut ter ,   depending upon the 
parameters  of  the  system [84]. S t a b i l i t y  of a similar bar   subjec ted   to  a 
s ingle   eccentr ic   fol lower  force was d iscussed   in  Ref. [ 8 5 ] .  The treatment 
can be considered a spec ia l  case of no Cor io l i s   forces .  

7.2.2 Derivation of  Equation  of  Motion and  Boundary ConditJons 

We consider a thin-walled,   canti levered, elastic beam with two pai rs   o f  
f lex ib le   p ipes ,  which are a t tached   to   the   bar  a t  a d i s t ance  h/2  from  the 
z-axis (so t ha t   t he  whole system  deforms as a uni t )  and pump . f lu id  a t  a con- 
s t a n t   v e l o c i t y  U through  the  pipes, as sketched i n   F i g .  7.1. We designate  
the  length of the  system by L, t h e   t o r s i o n a l   r i g i d i t y  by C = GJ, and the  
warping  r igidi ty  by C1 = ECw, [ 8 6 ] ,  and similar t o   t h e  work of  Benjamin [ 8 0 ]  

obtain  the  equation of torsional  motion of the  system,  using  Hamilton's 
pr inciple .  With  tp(z,t) denoting  the angle of r o t a t i o n  a t  sec t ion  z and at 
time t, the  s t ra in   energy of the  torsional  deformation i s  [87] 

where primes deno te   d i f f e ren t i a t ion   w i th   r e spec t   t o  Z. The kinet ic   energy 
is  

where a do t   deno tes   d i f f e ren t i a t ion   w i th   r e spec t   t o  time, m is the  mass of 
t he  assembly per   un i t  of length  (exclusive  of  the mass of   the  f luid) ,  and r 
is the  polar   radius  of gyrat ion of the  cross-section  of  the  system. 

The to t a l   k ine t i c   ene rgy   o f   t he   f l u id  may be obtained by adding t o   t h e  
kinetic  energy of the  f luid  contained  within  the  pipes ,  T2, t he  change i n  

the   k ine t ic   energy  of the   f lu id   en te r ing  and leaving  the  pipes  during a very 
small i n t e r v a l  of time A t :  
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T '  5 T2 + 2MU (-$ Uo2- $ U:) A t  (7.3) 

where T '  i s  the   t o t a l   k ine t i c   ene rgy  of t he  f uid, H t he  mass densi ty  of t he  
f lu id   pe r   un i t   l eng th  of  each p a i r  of  pipes, 3 t he   ou t l e t   ve loc i ty   vec to r ,  

and Ui t he   i n l e t   ve loc i ty   vec to r .  But 8i = U!, where P i s  the  uni t   vector  

in   the   z -d i rec t ion ,  and Uo = r + nu; where ; is the   uni t   vector   tangent   to  

the  top  (bottom)  pipe a t  z = L, r is  the   pos i t ion   vec tor  of the  top  (bottom) 
pipe a t  z = L, and n is  t h e   r a t i o  of the area of each   p ipe   to   tha t  of the 
attached  nozzle a t  t h e   f r e e  end. Hence, 6T' becomes 

+ 0 

+ i  

+ 

The  components 

i n   t he   y -d i r ec t ion ,  

denotes  the  average 
T then becomes (within  an  addi t ive  constant)  2 

of the   absolu te   ve loc i ty  of t he   f l u id  are 9 + U(ay/az) 

and U [1 - 5 ( y  ) ] - i n   t he   z -d i r ec t ion ,  where w(z,t) 

disulacement a t  sec t ion  z and a t  time t in   the   z -d i rec t ion .  

1 I 2  

But y e ( h / 2 ) ~ ,  which y i e l d s  

With 3 being  the  unit   vector  along  the  y-axis,  w e  have (see  Fig. 7.1) 

Then 
i + h2 (r + nu;) 6 r  w - nu fjw(L) + 4 [G(L) + nU cp'(L)] 6cp(L) (7.6) 

where ;(L)6w(L) i s  neglected  (being a term of higher  order).  The Lagrangian 
now becomes 

L = T1 + T2 - V1 + 2Mnl?w(L) (7.7) 
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and Hamilton's  principle  takes on the  form 

where 

Carrying  out  the  variations and using  integrat ion by pa r t s ,  w e  ob ta in  

2 
a ' p = O  
az 2 7 z = L  

We now introduce  the  following  dimensionless  quantit ies:  

CL2 

and F 
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which are 
subjected 
t h e   f i r s t  

(7.9) then become 

analogous  to  those  obtained  in Ref .  
a t  t h e   f r e e  end to   fol lower  forces .  

5 ' 1  (7.10) 

[72] for   can t i levered   bars  
exceDt f o r   t h e   t h i r d  term i n  

equation,  which is  due to   t he   Cor i i l i s   acce l e ra t ion .  As we s h a l l  
see i n   t h e   s e q u e l , - t h i s  term can have e i t h e r  a d e s t a b i l i z i n g   o r  a s t a b i l i z i n g  
effect .   That  is, f o r   s u f f i c i e n t l y  small Cor io l i s   forces   (n   l a rge  and p '  small) 
the   sys tem  loses   s tab i l i ty  (by to r s iona l   o r   t r ansve r se   f l u t t e r )  under smaller 
F than  obtained  vhen  n = - (no Coriol is   forces) .  On the   other  hand, f o r  p '/n 
su f f i c i en t ly   l a rge ,   t he  c r i t i ca l  value of  F  can be increased by increasing 
B 'h. 

We no te   he re   t ha t ,   i n   t o r s iona l   i n s t ab i l i t y  similar to   t ransverse  in-  
s t ab i l i t y ,   t he   Cor io l i s   fo rces  have an   e f f ec t  similar t o   t h a t  of i n t e r n a l  
viscous damping [32]. That is, although damping  (and also  Coriol is   forces)  
i s  a d i s s i p a t i n g  agency,  vhen i t  is s u f f i c i e n t l y  small, i t  may a c t  as a chan- 
ne l   fo r   t he   t r ans fe r  of  energy to  the  system  from  the  source, which is always 
associated  with  the  type  of  nonconservative  forces  considered  here [71]. 

7.2.3 S tab i l i ty   Analys is  

Frequency  equation. We t ake   the   so lu t ion  of system  (7.10) as cp(5, T) = 

$(5)eiwT and obtain  the  following  eigenvalue problem: 

(7.11) 
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I 

We then let  $(E) = AeiAt: and ob ta in  

Equation (7.12) is a polynomial of degree   fou r   i n  A and therefore  has,  
in   genera l ,   four  complex roots.  Let these  roots  be  designated by A - 
j = 1y2y...r4. Then, J ’  

4 1 XjAj = 0 

j 1.1 
(7.13) 

j =1 

where 11 = F(2-(r /2) - x .  System (7.13) has   non t r iv i a l   so lu t ions   i f  and only 
if   the  determinant of t h e   c o e f f i c i e n t s  of A * j = 1’2,. . .,4 is  i d e n t i c a l l y  
zero, i.e., the  frequency  equation is  j’ 

2 

i ( X  +A 1 
A r e  (AI 12 + ~ l h l ~ 2 ) ( ~ 2 - h l ) ( h 4 - ~ 3 )  

(7.14) 
cont. 
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(7.14) 

where A 1, A2, A3, and A are defined as functions of w through Eq. (7.12). 4 

Torsional  buckling. To obta in   the   condi t ion   for   d ivergent   to rs iona l  

motion, w e  l e t  w = 0 i n  Eq. (7.12)  and ob ta in  A = 0 ,  and A 

Then, with H = 6n2 and 7 = 2F - x. = yrr , Eq. (7.14) reduces  to  
192 394 

= k J(2F-X). 

2 

(7.15) 

which is ident ical   to   the  equat ion  obtained for the   tors ional   buckl ing of a 
cantilevered beam subjected a t  t he   f r ee  end to   fol lower  forces  [72]. The 
f i r s t  branch of the  tors ional   buckl ing,   corresponding  to   the  f i rs t  mode of 
i n s t a b i l i t y ,  is  shown by the   so l id   l i ne   i n   F ig .  7.2. 

Torsional   f lut ter .   For   given CY, p, n, 15 and 2 = yn , Eqs. (7.12)  and 2 

(7.14) yield  the  f requencies  of t o r s iona l   o sc i l l a t ions .  When i s  small, 
these  frequencies are a l l  located  on  the  lef t  hand s i d e  of the  imaginary axis 
i n   t h e  complex i w  plane and the  system  can  perform  only damped to r s iona l  
o sc i l l a t ions .  

As w e  increase F, one  of these  frequencies  approaches  the  imaginary axis, 
and f o r  a ce r t a in   va lue  of F, say Fer, Eqs. (7.12)  and  (7.14) y i e ld  a real 
va lue   for  w. I f  w e  now increase F beyond t h i s  cr i t ical  value, one  of the 
roo t s  of (7.14) becomes complex with  negative  imaginary  part. The  beam w i l l  
oscil late  with  an  exponentially  increasing  amplitude.   Consequently,  w e  s h a l l  
seek,   for   given CY, p, n, and 6, values of w (real) and i? which iden t i ca l ly  
s a t i s f y  (7.12)  and  (7.14). This  can  be  done  directly  with  the  aid of a com- 
puter.  The computer  can  be  instructed  to  f ind  the  roots of Eq. (7.12) f o r  
specified  values  of a, $, n, 6, w, and y, and then compute the  value of A. 
By varying  the  value of w and y systematically,   the cr i t ical  w and y may 
eas i ly   be   se lec ted  which make both real and imaginary  parts of A i d e n t i c a l l y  
zero.  This is i l l u s t r a t e d   i n   F i g .  7.3 where f o r  a = 1.50, 6 = 1.0, i3 1.0, 
and n = 1, both real and imaginary  parts of A = Al + iA2 are p lo t ted   aga ins t  

the  values of w . We see t h a t   f o r  y = 3.40, and w2 = 1.131~ , A is  i d e n t i c a l l y  2 4 
zero.   Similar   resul ts  may be  obtained  for   other   values  of a, p, and n. In 
t h i s  manner to r s iona l  f l u t t e r   c u r v e s  may be  constructed. The f i r s t  branch 
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(the  only  practically  significant one) of  torsional flutter  is  shown in Fig. 
7.2 by dashed  lines, for 6 = 1, n = 1, and  indicated values of 8. The solid 
curve for torsional  flutter in Fig. 7.2 is the limiting case  when  n = and 
corresponds to the torsional flutter of a cantilevered  bar  subjected  at the 
free end  to compressive  follower  forces [72]. 

It must  be  noted  that, even for  relatively  large values of B(n=l), the 
Coriolis  forces may have a destabilizing  effect for  certain  values of cy. 
(For  example, for B = 0.1 and 1.0 <cy C 1.35, as  is  seen in Fig. 7.2.) 

Transverse flutter. In addition to torsional  buckling  and  torsional 
flutter,  the  bar  may  lose  stability also by transverse  flutter [87]. The 
equation of motion and  the  boundary  conditions for this  case  have been de- 
rived by employing  Hamilton’s  principle in [80] and  D’Alembert’s  principle 
in [87]. Here, we may  simply  identify C1 with EI, cp(z,t) with y(z,t) and 
write 

which, by introducing  the  following  dimensionless  quantities: 

reduces to 
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Equation (7.12) now becomes 

k4 - 2p112 - w J(% Fl) X - w2 0 

a d  equation (7.14) takes on t he  form 

(7.12 ') 

(7.14') 

For a given B and n, w e  now seek values  of w and F1 which i d e n t i c a l l y  

s a t i s f y  (7.12 ') and (7.14 ') . In t h i s  manner w e  ob ta in   t he  l i m i t  of trans- 

v e r s e   f l u t t e r ,  as shown by horizontal   dashed  l ines   in   Fig.  7.2 f o r  

E I r  /C1 = 1.5 and B - 0.1, 0.2. In   t h i s   f i gu re ,   t he   ho r i zon ta l   so l id   l i ne  

ind ica tes   the  l i m i t  of t r a n s v e r s e   f l u t t e r   f o r  n = [72]. We n o t e   t h a t   f o r  
B = 0 .5 ,  1.0, the   t ransverse   f lu t te r   occurs  a t  y 12.2, and 15.8 respectively.  
These values are not shown i n  F i g .  7.2. 

2 

7.2.4 A-nalysis  of  Flutter by I n d i r e c t  Method 

The method used in   t he   p rev ious   s ec t ion   fo r   t he   ana lys i s  of f l u t t e r  was 
a d i r e c t  one.  That .is, f o r  a given  system we direct ly   obtained  the cr i t ical  
values of y and w. One may solve  the same problem by an   ind i rec t  method which 
was employed i n  [87]. 

To t h i s  end w e  let  A j = 1,2, ..., 4 denote   the  roots  of Eq. (7.12). 
5 ;  

Then we have 
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xlh2’3A4 E - w 
2 

The f i r s t   e q u a t i o n   i n  (7.16a) is  i d e n t i c a l l y   s a t i s f i e d  i f  we let  

l l = a - b - c  

A2 - - - a + b - c  

A 3 - - a - b + c  - 

A 4 = a + b + c  

and from the  remaining  equations we ob ta in  

a 2 + b  + c  =y 2  2 2F-x 

a4 + b4 - 2a2b2 - 2b2c2 - 2c2a2 = - u) 2 

We now let 

and from (7 .16~)   ob ta in  

p2 - q2 + 2c2 = 2F - n 

(p 2 2  + q )c = $ .J(s I f )  a 2 w  

(7.16a) 

(7.16b) 

(7 .16~)  

(7.16d) 

(7.16e) 
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where  p,  q, and c are all real. Subst i tut ing from (7.16d) i n t o  (7.16b) and 
then  into  the  frequency  equation (7.14), we f i n a l l y   a r r i v e  a t ,  a f t e r  a series 
of tedious  manipulations, 

A A1 + i A 2  = 0 

4c 3 + (p - 3q - 4c )ll 3 cos p s inh q 

- 4c ] - (3p - q - 4c )ll 1 s i n  p cosh q 

(p2+ q2)T 5 s i n  2c 

4 2 2 2  

4 2 2  2 

A2 e: {[P q (4 - P 1 + C  (P + q  - 6~ q 1 - 3c (P - 1 - 4 c  1 2 2  2 2 2 4  4 2 2  4 2  2 6 

+ [2p q - c (p - q2) + 4c 1 T, 3 s i n  p si& q 

+ pq {2 [-p q + 3c (p - q ) - 7c4] - [p - q - 2c ] 7') 3 cos p cosh q 

2 2  2 2 4 

2 2  2 2 2 2 2  2 

(7.17) 

- p q { [ p + q + 2 c ( q - p ) + 2 c ] - [ p - q - 2 c ] ~ ~ c o s 2 c  4 4   2 2 2  4 2 2  2 

For  an assumed value of c and given (Y and u = 6n , we may  now f ind  p and 2 

q such  that  A1 = 4 = 0 .  Then, from equations (7.16e) the  corresponding 

values  of F, B, and w, f o r  a given n, may be  computed. 

The above method is an   i nd i r ec t  one, as we  do  not know, i n  advance,  which 
p a r t i c u l a r  problem is being  investigated. Moreover, i f  a computer is  being 
used to   f ind   va lues  of p and q which s a t i s f y  A = A2 = 0, i t  i s  then   j u s t   a s  

easy  to  employ the   d i r ec t  method out l ined  in   the  previous  sect ion.  However, 

f o r  small values of Cor io l i s   forces ,   tha t  is for   suf f ic ien t ly   smal l  ,./($ '/n), 
one may reduce Eqs. (7.17) by neglecting  the  higher  order terms i n  c and study 
t h e   e f f e c t  of small Cor io l i s   forces   d i rec t ly .   This  w e  sha l l   d i scuss   i n   t he  
following  section. 

7.2.5 The Effect  of-   Small   Coriolis  Forces 

We consider  equation (7.17) and by neglecting O ( C ) ~  and higher  order 
terms ob ta in  
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..._ . .. .. . .._ . 

- 
A1 = p {2 [3p2q2- q4] + [p2- 3q2] 1 ] cos p s i n h  q 

+ q {2  Cp4- 3p2q2] + [q2- 3p2] 17 3 s i n  p cosh q 

(7.18) 

where 

(7.19) 

The second  equation i n  (7.18) i s  the  frequency  equation  for n = m, (no 
Cor io l i s   forces  [72]),  and the   f i r s t   equa t ion ,   t o   t he   f i r s t   o rde r  of approxi- 

mation i n  ,/($‘/SI) = O(c), presents   the   e f fec t  of s u f f i c i e n t l y  small Cor io l i s  
forces.  We note   that  l1 and 3 are  both  independent  of c and, therefore,  we  

may direct ly   seek  values  of w and 5 which make them ident ical ly   zero.   This  
is  i l l u s t r a t e d   i n   P i g .  7.4 f o r  a = 1.5, where the cr i t ical  load i s  found t o  
be y = 1.67. In   F ig .  7.5, the cr i t ical  load y i s  p lo t ted   aga ins t  CY fo r   su f -  
f i c i e n t l y  small Coriolis  forces  ( the  dashed  curve).  The so l id   curve   for  
t o r s i o n a l   f l u t t e r   i n   t h i s   f i g u r e  i s  for   the   l imi t ing   case  of n = [72]. We 
note   that   the   exis tence of Coriol is   forces   does  not  al ter the  region of d i -  
vergent  motion, as is  expected. However, i t  makes th i s   reg ion  a closed set, 
t h a t  is, i n  t h e  presence of Coriol is   forces ,   the   points   on  the  divergent  curve 
indicate neu t r a l ly   s t ab le  states. The ho r i zon ta l   so l id   l i ne   i n   F ig .  7.5 de- 
notes  the l i m i t  of t r a n s v e r s e   f l u t t e r   f o r  n = =, and the  horizontal  dashed 
l i n e   i n d i c a t e s   t h a t  l i m i t  f o r   S u f f i c i e n t l y  small Cor io l i s   fo rces  [32], ( f o r  

E I x r  /C1 = 1.5). 2 

It may be  of i n t e r e s t , t o   o b t a i n   t h e   c r i t i c a l   v a l u e s  of y f o r  $ = and 
n = 1. This, of  course,  provides  the  upper limit of to r s iona l  and t ransverse 
f l u t t e r .  The dot ted  curve  in   Fig.  7.5 r ep resen t s   t h i s   l imi t ing  case f o r  6 -  1. 
We note   tha t   t ransverse   f lu t te r ,   fo r  $ = 0 and n = 1, occurs a t  y - 4 7 ,  which 
i s  not shown i n  Fig. 7.5. 
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7.3 Stab i l i t y -o f  a Bar i n  Parallel_Flu-id Flow.pT&ing into  Consideration 
the  Head Resistance 

The problem  of a cantilevered  bar  placed i n  a f luid  f low was analyzed by 
Kordas [ 8 8 ] .  The head r e s i s t ance  was assumed t o  be  represented by pure  fol-  
lower  force,  which was no t   fu r the r   r e l a t ed   t o  any parameters  of  the  bar  or 
the   f lu id .   P is ton   theory  [ 8 9 ]  vas assumed to   cha rac t e r i ze  'lateral pressure 
on the  bar.  The continuous  system w a s  replaced by a system  with two degrees 
of  freedom and s t a b i l i t y  limits i n  terms of   re levant   parmetera  of the problem 
were calculated.  

7.4 S t a b i l i t y  of Bars Subjected  to  Radiant Heat 

In a recent  paper  Augusti [ g o ]  has  suggested a spec ia l   cons t ruc t ion  of 
the   l inks   o f   an   a r t icu la ted   bar ,  which would make i t  s e n s i t i v e   t o   r a d i a n t  
heat. The l i nks  are made up of cells; the  heat  absorbed by erch  cell  causes 
thermal  deformations  which  induce a r e l a t i v e   r o t a t i o n  of the  two adjacent  bars. 
An in te res t ing   fea ture   o f   the   resu l t ing   equat ions ,  e.g., f o r  a bar   with two 
degrees of freedom, i s  t ha t   de r iva t ives  of generalized  coordinates  (angles of 
ro ta t ion)  up to   th i rd   o rder   a re   in t roduced .  Depending upon the  combination 
of re levant   parameters ,   s tab i l i ty   can   be   los t  by f l u t t e r   o r  by divergence. 

Thermally  induced  vibration and f l u t t e r  of f l e x i b l e  booms vere discussed 
by Yu [91] and commented on by Augusti  [92],  where f u r t h e r   r e f e r e n c e s   t o   t h i s  
phenomenon can  be  found. 
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CHAPTER V I 1 1  

LABORATORY EXPERIMENTS AND MODELS 

8.1 Introduction 

As already  mentioned, i t  i s  t h e   i n t e n t   t o   d i s c u s s   i n   t h i s  monograph only 
those  problems  involving  follower  forces which do not  belong  to  the now almost 
c l a s s i c a l  areas o f   ae roe la s t i c i ty  and s t a b i l i t y  of ro t a t ing   sha f t s .   I f  we 
omit these two categories,   the  only two remaining areas of  problems  with 
follower  forces which  have  been realized  to  date  involve  internal  f low  through 
f lex ib le   p ipes  and f luid  je ts   impinging on a deformable  structure. 

As regards  the  former area, mention  should be  made above a l l  of  the  pio- 
neering work by Benjamin  [80,93] on the dynamics  of a system of a r t i c u l a t e d  
cantilevered p i p e s  conveying f l u i d   i n  which both  divergence and f l u t t e r  were 
observed and s tab i l i ty   boundar ies  were determined  analytically and a l s o  by 
means of quantitative  experiments.  Benjamin's work was continued by Gregory 
and Paidoussis  [87,94] who s tudied  theore  t ical ly  and experimentally  continuous 
tubular   can t i levers  conveying f lu id .  One should  also recall the earlier work 
by Long [95] on v ib ra t ion  of a tube  containing  flowing  fluid, who, however, 
did  not   observe  any  instabi l i t ies ,   being  interested  only  in   the  inf luence  of  
the  f luid  f low on frequencies  of  vibration.  Divergence  of a simply  supported 
pipe  conveying  fluid w a s  observed more recent ly  by Dodds and Runyan [96]. 
Simply supported and cantilevered  pipes  conveying  f luid were invest igated  a lso 
by Greenwald and Dugund j i [97]. 

The dynamics and s t a b i l i t y  of slender  cylinders  surrounded  by,  rather 
than  containing,  flowing  fluid w a s  s tudied  analyt ical ly  and experimentally by 
Paidoussis [98-1001. He points   out   that ,   provided  the  f low  direct ion  coincides  
with  the  axis  of  the  cylinder a t  r e s t ,   t hen ,   fo r  small motions  about  the  position 
of res t ,   the   forces   exer ted  by the   f lu id   in   the  two cases of external  and in-  
te rna l   f low  a re   c lose ly  similar. This becomes evident on considering  that   the 
forces  exerted by the  f luid,   excepting  those due to   f l u id   f r i c t ion ,   i n   bo th  
cases   a r i s e  from l a t e ra l   acce l e ra t ion  of  the  flowing  fluid,  caused by l a t e r a l  
motion of the   cy l inder .   In   ex te rna l   f low,   th i s   acce le ra t ion  is  suffered by 
the  vir tual   or   "associated" mass of f l u i d ,  which is  dynamically  equivalent  to 
the  contained mass of f l u i d   i n   i n t e r n a l  flow. Hawthorne [ l o l l ,  taking advan- 
tage   o f   th i s   s imi la r i ty ,   inves t iga ted   the   s tab i l i ty   o f   f lex ib le   tubes  towed i n  
water and demonstrated  that   d ivergence  instabi l i ty  is  possible   in  such  systems. 

In   th i s   contex t  i t  i s  deemed appropriate  to  mention some re la ted   bu t  con- 
s iderably more complex hydro-elastic-pneumatic  problems  arising  in  structural  
dynamics  of  launch vehicles  studied by Runyan, Pra t t  and Pierce [102], as well 
as the  broad area of propel ler-rotor  whirl f l u t t e r ,  a comprehensive  review of 
which was recently  prepared by Reed [l03]. 
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The mechanics  of  impinging jets was s tudied   to   da te  from the  point  of 
view  of f luid  behavior ,  one of  the  goals  being  the  determination  of  the  pres- 
s u r e   d i s t r i b u t i o n  a t  a r ig id   sur face .  By c o n t r a s t ,   i n  a recent  study c104] 
the  interest   centered on the  behavior  of a p r imar i ly   e l a s t i c   s t ruc tu re  sub- 
jected  to  an  impinging jet. Quantitative  experiments were ca r r i ed   ou t  and 
compared wi th   theore t ica l   p red ic t ions ,  as described  in  the  following  section. 

8.2 Ins t ab i l i t y   o f  a Mechanical Sys t e m  Induced bypan Imp-inging Fluid Jet 

8.2.1  General 

The mathematical model of  the  physical  system  considered  here may be 
called  Reut 's  problem,  mentioned a l ready   in   Sec t .  6.2. It cons i s t s  of a can- 
t i l eve r   w i th  a r i g i d   p l a t e  a t  i ts  free  end, which is  normal to   the  axis. It 
is  subjected  to  a force ,   ac t ing  on the plate ,  which i s  always  coll inear  with 
the undeformed axis  of  the  canti lever,   Fig.  8.1. Bolotin [8] r epor t s   t ha t  
t h i s  problem was f i r s t  posed by Reut i n  1939  and solved by Nikolai   in  the same 
year .   In   this   context ,   Bolot in   suggests   that   the   force  in   Reut 's  problem may 
be r ea l i zed  by an  impinging jet  of abso lu t e ly   i ne l a s t i c   pa r t i c l e s ,   s ince   t he  
kinet ic   energy  of   the  par t ic les  is  completely  absorbed upon impact. It appears, 
however, t h a t  no a t t e m p t  was ever made to   fol low up these  suggest ions,   or   to  
rea l ize   Reut ' s  problem i n  any other  way. Bolo t in   a l so   sugges ts   tha t   the  
pressure from a je t   o f   l iqu id   o r   gas  may induce  such a force when t h e   i n c l i -  
nation of  the  force, as the  bar  deforms, is  neglected.* 

In  an  attempt  to  construct models  based  on  these  ideas, i t  was disco- 
vered  that  by covering  the  plate   with  screens  of   cer ta in  mesh s i z e s  a problem 
very  close  to  the  Reut 's  one may be  real ized.  The r e s u l t a n t   f o r c e ,   i n   t h i s  
case,   has   an  incl inat ion which can be control led by a suitable  arrangement  of 
screens  of  various mesh s izes ;   the   po in t   o f   appl ica t ion   of   the   resu l tan t   force ,  
however,  always l ies on the axis of the undeformed cant i lever .  When th is   force  
s t ays  normal to   the end p la te ,   the   sys tem  loses   s tab i l i ty  by divergence  (attain- 
ment of  another  equilibriumstate);   the  force i s  conservative. On the  other  
hand, i f   the   force   s tays   co l l inear   wi th   the  undeformed ax i s  of the  bar,   the 
loss   o f   s tab i l i ty   occurs  by f lu t te r   (osc i l la t ions   wi th   increas ing   ampl i tudes) ;  
the  force i s  nonconservative. By cont ro l l ing   the   inc l ina t ion  of the  force,  
various  degrees of nonconservativeness may be  attained. 

The experimental   resul ts   are   obtained  using a system  with two degrees  of 
freedom, rather  than a cont inuous  cant i lever .  The applied  force is induced by 
an  impinging a i r  j e t .  The degree of nonconservativeness i s  control led by em- 
ploying  sui table  end a t tachments ,   resu l t ing   in   e i ther   d ivergent   o r   f lu t te r - type  
motions  of  the  system.  Also,  the  effect of viscous damping forces  is  inves t i -  
gated. It is  found that  the  experimentally  obtained  f lutter  load  corresponds 
ra ther   c lose ly   to   the   theore t ica l   p red ic t ion  when small d i s s ipa t ive   fo rces  are 

"~ ~ -~ ~" __ * ~" . ~ ~ ~ 

Thi's,  of course, i s  not   acceptable ,   s ince it  i s  precisely  the  presence 
of  the component of t he   fo rce   i n   t he   d i r ec t ion  normal to   the  impinging f l u i d  
that ,   in   this   case,   renders   the  system  conservat ive.  
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included;   this   confirms  the  ear l ier   f indings  that  small damping forces  may 
have a des t ab i l i z ing   e f f ec t .  

8.2.2 Description-of Model and Supporting Equipment 

The model consis ts   of  two l ike   r ig id   rods ,   F ig .  8 . 2 .  One rod i s  elasti-  
ca l ly   h inged   to   the   f i r s t   rod  and f r e e  a t  the  other  end. The system is  con- 
s t ra ined  to  move i n  a horizontal  plane,  being  supported by long,   l ight  wires. 
Various  rigid  attachments  can be placed a t  the   f r ee  end of the second  rod. 
The at tachment   consis ts   basical ly  of a r i g i d   f l a t  plate covered  with a combi- 
nat ion of  screens  of  various mesh sizes.  This  attachment i s  r ig id ly   f ixed  
and mounted normal to   t he  axis of  the  second  rod.  In  the  absence  of any d i s -  
turbance,  the  system i s  in   equi l ibr ium when the two rods are coll inear  (undis- 
turbed  configuration). 

A fixed  nozzle i s  placed  along  the  equilibrium axis of  the  system, one 
inch away from the  attachment, and an a i r  j e t  i s  made t o  impinge  upon the 
attachment. The flow rate can  be  varied by means of a valve. The dynamic 
pressure a t  the  nozzle  corresponding  to a given  flow rate can  be  read  fran a 
d i a l  gage. 

It i s  observed  that as the  f low  rate,  and hence  the  force on the  attachment, 
i s  increased and passes a certain  (cri t ical)   value,   the  system  does  not  remain 
in   the  undis turbed  configurat ion.   Stabi l i ty  is l o s t  by e i t h e r   f l u t t e r   ( o s c i l -  
lat ions  with  increasing  amplitudes)  or by divergence  (buckling - t he   a t t a in -  
ment of  another  equilibrium  state),   depending on the  nature of the  attachment 
used. If  the  attachment is a f l a t  p la te  with a smooth surface (a f l a t   s h e e t  
of aluminum) facing  the a i r  je t ,   then   the   loss  of s t ab i l i t y   occu r s  by diver-  
gence. By cont ras t ,   f lu t te r - type   mot ion  is observed i f  the  attachment is  a 
plate  with  screens of c e r t a i n  mesh sizes  placed on the  surface  that   faces   the 
impinging f lu id .  The sequence of photographs in   F ig .  8.3 i l lustrates the 
f lut ter- type  motion,   while   Fig.  8 . 4  depicts  a buckled state (divergence).  Fig. 
8.5 and Table 2 present  the  numerical   values  for a l l  the  re levant   propert ies  
of  the  system. 

The supporting  equipment  consists  of a cal ibrat ing  system which i s  used 
to   cor re la te   the  dynamic pressure,   hence  the  f low  rate,   with  the  actual  force 
which a c t s  on the  system.  Three  square s tee l   p la tes   a re   p laced   hor izonta l ly  
one  above the   o ther ,  and are   separated and supported by s e t s  of steel leaf  
springs.  The steel leaf  springs  connecting  the two lower p la tes   permi t   d i s -  
placement in   on ly  one direction,  while  those  connecting  the  upper two p l a t e s  
permit  displacement  only  in  the  perpendicular  direction. Two stages are thus 
formed. The displacement of each  stage is, with a high  degree of accuracy, 
proport ional   to   the component of  the  force which acts along  the  direct ion of 
the  displacement. With the  aid of a p a i r  of s t r a i n  gages  attached  to  the steel 
leaf   spr ings,  and using a compensating  network,  readings  can be taken which a r e  
proportional  to  the  respective  displacements of  each  stage.  In  this' manner, 
strain-gage  readings  can  be  related  to  the magnitude of the  force  acting  on 
the  system. 
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The supporting  equipment  just  described i s  used t o   f i n d   t h e   d i r e c t i o n  and 
the  magnitude of the   force  on the  attachment when the dynamic pressure of the 
impinging air jet a t  the  nozzle is known. The attachment i s  mounted on the 
top  plate   of   the   support ing  s tages  and then  subjected  to  the air  j e t  a t  a 
given  angle  of  incidence,  Fig. 8.6. The magnitude  and  the  direction  of  the 
resul tant   force  corresponding  to  a given  angle  of  incidence and f o r  a given 
dynamic pressure are thus  obtained  experimentally. 

8.2.3  Theory 

As already  mentioned,  the  problem  of a cant i lever   wi th  a r ig id   c ros s   p l a t e  
a t  i t s  f r e e  end and subjected  to a force which i s  always  directed  along  the 
i n i t i a l ,  undeformed axis of   the  cant i lever ,  was f i r s t  posed  by  Reut i n  1939. 
It is essent ia l   to   note   that   the   appl ied  force  in   Reut’s  problem is not  at tached 
t o  a mater ia l   po in t  of the  system,  but  rather  to a l i ne   i n   space .   In   s t ruc -  
tu ra l  mechanics,  boundary-value  problems are commonly posed for   sur face   t rac-  
t ions which are connected  to  the  material   points upon which they  act .  As a 
re su l t ,   t he   d i f f e rence  between the  displacements  of  the  material  points and 
of  the  points of application  of  the  forces  disappears.  

In  the  present  problem,  the  force is induced by the  act ion  of   an air j e t  
upon the end plate .  It may be  assumed t h a t  such  an ac t ion  is equivalent   to  a 
r e su l t an t   fo rce  whose point  of app l i ca t ion  lies always on the axis of  the un- 
deformed  system; t h a t  i s ,  a long  the  direct ion of the  flow.  This  force  continu- 
ously  disengages from the  mater ia l   point  on  which i t  is instantaneously  acting. 
This force i s  conservat ive  only  i f  i t  s t ays  normal to   the end p l a t e  as the 
system  deforms. In  the  subsequent  analysis,  we w i l l  denote   this   force by P 
and the  angle by which i t  r o t a t e s ,  as the  system  deforms, by q2. 

We consider small lateral  motions of the  system as shown in   F ig .  8.5. 
The r igid  bar ,   designated by I, is connected t o  the  support by a r o t a t i o n a l  
spring of s t i f f n e s s  K1 and c a r r i e s  a t  i t s  other  end a ro t a t iona l   sp r ing  of 
s t i f f n e s s  K2 t o  which i s  attached  another  r igid  rod,  designated as 11. In  ad- 

d i t i on ,   rods  I and I1 are connected t o  two l i nea r   co i l   sp r ings  as shown i n  
Fig.  8.5.  Since  the  displacement  of  the  spring  connected  to  bar I i s  not 
coupled  with  the  motion  of  bar 11, t h e   s t i f f n e s s  K properly  accounts  for  the 

e f f e c t  of th i s   spr ing .  The spring  connected  to b a r  I1 is located a t  a d i s -  
tance  d2 from the  center of the  middle  joint  and h a s   s t i f f n e s s  K 

1 

3’ 

The iner t ia l   p roper t ies   a re   represented  by seven masses m j = 1,2,  ... 7 ,  

and seven  centroidal moments of i n e r t i a  I j = 1,2,. . .7.  The mass of the end 

ro t a t iona l   sp r ing  is denoted by m and t h a t  of the  rod I i s  denoted by m2. 

The cent ra l   ro ta t iona l   spr ing   has   in   e f fec t  two masses m3 and m which are 

at tached  to   the  rods I and 11, respectively.  The mass of the rod I1 is m 

and m i s  t h a t  of t he   co l l a r  which f i t s   the   a t tachment   having  mass m 

j’ 

3’ 
1’ 

4 

5’ 

6 7’ 
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The dis tance between the   cen ters  of the end and the  middle   rotat ional  
spr ings is denoted by il, while  the mass m is at  a dis tance i2  fropl the cen- 

ter of the  middle  joint .  The dimensions al, bl,  and c1 are the  dis tances  from 

the  center  of the end j o i n t   t o  masses ml, m2, and m respectively,   while a2, 

b2,  and c2 designate  the  respective  distances of m4, m5, and m6 from the  cen- 

ter of the  middle  joint. 

7 

3' 

The two ro ta t iona l   spr ings  were made of high tempered spring steel with 
i d e n t i c a l  geometry  and,  therefore,  they  have small damping with,   plausibly,  
the same damping constant el. Since  the  attachment  has a large  surface area 
which moves relat ive  to   the  impinging air  je t ,  an   ex te rna l   l i nea r  damping with 
constant e2 appears   to  be a reasonable  representation of the  corresponding 

damping mechanism. 

The magnitude of the  force due to  the  impinging a i r  j e t  i s  P, the  direc- 
t ion of  which encloses  an  angle mp2 with  the undeformed axis. a is assumed 

t o  be a constant which will be determined  experimentally  with  the  help of the 
aux i l i a ry  equipment as descr ibed  in   Sect .  8.2.4. 'pl and 'p2 are the  respective 

r o t a t i o n s  of bars I and I1 f r a n   t h e   i n i t i a l   s t r a i g h t   p o s i t i o n .  

The following  equations of motion  are  obtained by employing  D'Alembert's 
pr inciple:  

where 

All = (m + m5+ m6+ ?)Xl + mla12+ m b + m c + 11+ I2 + Ig 2 2 2 
4 2 1  3 1  

A 1 2 = ~ l = ( m a + m b + m c + m X ) 1  4 2  5 2  6 2  7 2  1 

~ 2 ~ = m a ~ + r n b   4 2   5 2  2 + m c 2 + m L  6 2  7 2  2 +1+15+16+1, 4 

Bll = c2A12+ 2el 

B12 a Bpl = 624112- 61 

B22 = c2d22+ c1 

Cll = K1+  K2+ K3i1 
2 
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C22 = K2+ K d 3 2  

Undamped System - Flut ter .   Consider  first the undamped case: i.e., l e t  
El = E2 5 0 .  Then B = 0 .  Assuming solut ions  of   the  form 

ij 

cpl = aleiwt 
(8.3) 

where i = J-1, lpl and B 2  are undetermined  amplitudes, u) is  an  undetermined 

frequency and t is  the time variable,   the  associated  frequency  equation is 

aw + b w  + c = O  4 2 
(8.4) 

where 

a = %1%2- *12 
2 

F l u t t e r   o c c u r s   i f  u) is  complex v i t h  a negative  imaginary  part. The 
threshold (cri t ical)  value of P, ca l led  P,, i s  obtained  by  set t ing 

b2 - 4ac = 0 03-61 

and is  

- 2hk - f  2 2 2  2 2 2 
* 2  h  k -hkfg-4h jm+hjg + hmf 

'*lS2 - f2- 4h: f - 4 h j  

where 

= 2A12C12 - *llC22 - %2c11 

= A11%2 - A12 
2 
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k 31 C11124 - C l 2 L 1 ~  - C1211 - C22..C1 

= cllc22 - c12 
L 

A8 the  value of P is increased ,   f lu t te r  w i l l  occur when P becomes equal 
to   the  lower  value of P,. Note t h a t  P, is a function of a through  equations 
(8.8). P, ex i s t s   on ly  when the argument  of the   square   roo t   in  Eq. (8.7) is 
nonnegative. 

Damped System - F l u t t e r .  Using an assumed solution  of  the form (8.3) i n  
Eqs.  (8.1) resul ts   in   the  fol lowing  determinant  which i s  set equal   to   zero   for  
a nont r iv ia l   so lu t ion :  

= o  

I f  we neglect  the  product  of el and e2 in  the  expansion of (8.9), we 
obtain two equations by separat ing  the real and  imaginary pa r t s .  The f i r s t  
equation i s  the same as equation (8.4). The equat ion   resu l t ing  from the 
imaginary par t  yields   the  fol lowing  re la t ion:  

w2 B 1.1 (PL2a+C22) ~. + B22(C11-PX1)-B12tPLl(l+rr) . + 2CI21 (8.10) 
A22Brl + AllB22' - 2A12B12 

Subs t i t u t ing  tu2 f r m  Eq. (8.10) i n t o  Eq. (8.4) and denoting by Pd the  thresh- 

old  values of P fo r   t h i s   ca se ,  we obtain 

(8.11) 

where 

u =  2hqr + qa 2 + f r + k  s S 
(8.12) 
cont . 
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2 2 
V f -  hr + = + m  

S 
2 8 

2 
w = L + f q +  j 

S 
2 s  

and 

r = (1 + ~ s ) C ~ ~  + (1 + s)cl l  - 2cl2(l  - S) 

where 

c 01/e2A2 and ,f, 3 R1 w d 2  

(8.12) 

(8.13) 

(8.14) 

Thus, t h e   c r i t i c a l   f o r c e  depends  not  only on (y, b u t  a l s o  on 6 ,  e s s e n t i a l l y  
t h e   r a t i o  of  the damping coe f f i c i en t s .  The c r i t i c a l   f o r c e  i s  the lower of the 
two values  of P and i t  ex is t s   on ly  when the  argument of the  square  root  in 

Eq. (8.11) is  nonnegative. 
d 

Divergence. For divergence,  or  buckling, u) is  set equal   to   zero   in  Eq. 
(8.4). The condition is  then 

c = o  (8.15) 

Denoting  the  value  of P a t  which this   occurs  by Pb, we have 

(8.16) 

where j, k, and m are   def ined by Eqs. (8.8). 

As are P, and P P is  a l s o  a function of (y, but i t  is independent of d,' b 
the mass d i s t r ibu t ion .  Pb e x i s t s   o n l y   i f  k2 - 4jm 2 0. 

Results. With the  system  parameters  given,  including  the  spring  constants, 
which are  determined  experimentally  (see  Sect.  8.2.4), Eqs. (8.7), (8.11), and 
(8.16)  must be solved  for P for   each  specif ied  value of a. This   r epe t i t i ous  
task was performed with  the  aid of a CDC 3400 computer. 

As can be seen  in   Fig.  8.5,   for = 0 ,  the   force P i s  always  directed 
along  the  equi l ibr ium  l ine;  i .e.,  the  l ine  def ined by cpl = cp2 = 0. When a- 1, 
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the  force is  always  perpendicular  to  the  surface of the  attachment. As  d i s -  
cussed earlier, in  the  former  case  the  force is  nonconservative, while in   t he  
lat ter i t  is conservative. It turns   ou t   tha t   wi th   the   p resent   se tup ,   exper i -  
mental ly   real izable  a are in   the   range  0.23 S 01 5 0.91. 

Unfortunately,   mechanical  failure of the  joints  occurred  during  the  ad- 
vanced s tage of  experimental  measurements  and,  consequently, when the model 
was reassembled,  the  spring  constants K 5, and K changed. Thus i t  became 
necessary  to  designate  the  previous model by system I and the  reassembled mo- 
d e l  by system 11. With due  respect  to  the  difference  in  system  parameters,  
s t ab i l i t y   cu rves ,  P versus a, are shown in   F igs .  8.12  and 8.13. 

3 

8.2.4  Experimental ~ ~~ Procedure and Results 

Correlat ion of Force With A i r  Pressure and Determination  of a. To f ind 
the  magnitude  and  the  direction  of  the  force  acting on the  attachment due t o  
a given  airflow rate, the  supporting  equipment  described  in  Sect. 8.2.2 i s  
used. 

" - __~. . -~ ~. ~" -. - 

The nozzle  assembly i s  detached  fran  the model and mounted ad jacent   to  
the  cal ibrat ing  device,   Fig.   8 .6 ,   paral le l   to   the  direct ion of motion of  one 
of the  stages.  The rigid  attachment is  separated from the model and mounted 
on a special   bracket  on the  top  plate of the  cal ibrat ing  s tages .   This   bracket  
may be rotated so that   the   angle  between a normal to  the  attachment and the 
cen te r   l i ne  of the  nozzle, namely ~ 2 ,  may be varied. Markings are provided 
f o r  q2 = 0 ,  5,  10,  15, 2 0 ,  25,  and 30 deg. 

The f i r s t   s t e p  i s  t o   f i nd  a r e l a t i o n  between the  displacement  of  the 
s tages  and the  force  applied  to  the  top  plate.   This is done by applying known 
forces   a long  the  def lect ions of each  stage and noting  the  strain-gage  readings. 
I f   t he   d i r ec t ion  parallel  to   the  nozzle  i s  designated by x and the  perpendi- 
cu la r   d i r ec t ion  by y ,   r e i a t ions  of the form 

Px = SIAex 

P = S A e  
Y 2 Y  

(8.17) 

may be wri t ten.  P and P are   the  forces ,  and Ae and Ae are the  differences 
X Y X Y 

in   s t ra in-gage  readings between  no  load and fu l l   l oad ,   fo r   t he  x and y-direc- 
t ions ,   respec t ive ly .  SI and S are the  proport ional i ty   constants .  2 

The next s t e p  is to   co r re l a t e   t he   fo rce ,  P, with  the a i r  pressure,  p. 
From the  free-body  diagram of the  attachment mounted on the   ca l ib ra t ing  sys- 
tem, Fig. 8.7, the   fol lowing  re la t ions are obtained: 

(8.18) 
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where the  force P has been s p l i t   i n t o  i t s  components Px and P which are 

functions of the  pressure,  p. The parameter Q is  assumed t o  be a function 
of p a lso.  From Eqs. (8.18) we can write 

Y' 

(8.19) 

For a given  attachment and angle cp , strain-gage  readings are taken  for 2 
a set of  pressures.  These  in  turn  yield  the  forces P and P corresponding 

t o  each  pressure. The angle of incidence, v2, is  then  varied from 0-30 deg 

i n  5-deg increments and for  each  value of cp2 an  average  value  for P /P i s  

obtained  over a range of pressures p. It turns  out  experimentally  that  P 

and P a re   l inear   func t ions  of  p, as one would expect, and thus   the   ra t io  

P /P is  independent of p. This means t h a t  cy must  be  independent of p because 

of Eq. (8.19). If a rc t an  P /P is plot ted  versus  q2,  the resu l t  i s  (very 

nearly) a s t ra ight   l ine   and ,   therefore ,   the   s lope  may be interpreted as a i n  
Eq. (8.19). Q is  a constant   for  a given  attachment. 

X Y 

Y X  

X 

Y 
Y X  

Y X  

The c r i t i c a l   f o r c e  is read,   or   interpolated as the  value of P a t  cp = 0 
X 2 

corresponding  to   the  cr i t ical   value of pressure. For small qz, P Px; t h i s  

is  within  the  scope of the  l inearized  theory.  

I n   t h i s  manner, the  value of cy is  obtained  experimentally  for  each a t -  
tachmen t. 

Determination  of  Stiffnesses. 

Dynamic Method. The spring  constants K1, K2, and Kg may be determined 

experimentally by a simple dynamic ana lys i s  of various  motions  of  the  system. 
The spring  constant K associated  with  the end j o i n t  and the  l inear   spr ing 

at tached  to   bar  I may be evaluated by locking  the  middle  joint  so tha t   the  
two bars move as a r ig id   un i t ,   F ig .  8.8. After  giving a small disturbance, 
the  natural   frequency is  measured  from  which Kl i s  determined.  In a similar 

manner, the  spring  constant 3 of  the  middle  joint,may be determined by lock- 

ing  the end j o i n t ,  removing the   l inear   spr ing   a t tached   to   bar  I1 and allowing 
the  system t o   o s c i l l a t e   f r e e l y ,   F i g .  8.9. 

1 

Spring  constant K can  be  found i f  K2 is  known.  The l inear   spr ing  is  

at tached  to   bar  I1 i n  i t s  or ig ina l   pos i t ion  and the  natural   frequency is  meas- 
ured.  This  gives  an  expression  for  the combined s t i f f n e s s  from  which K may 
be evaluated. 

3 

3 
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S t a t i c  Method. An alternate procedure is to   use  a static method where- 
by forces  are d i rec t ly   appl ied  and the   r e su l t i ng   de f l ec t ion  measured. The 
procedure is div ided   in to   th ree   s teps  and is  explained i n   F i g s .  8.10 and 8.11. 

Theoretically,   these two methods should  yield  ident ical   resul ts .   Experi-  
mental ly ,   the   resul ts   of   the  two methods d i f f e red   s l i gh t ly ,   Tab le  2.  The sta- 
t i c  measurement i s  to  be  preferred  because  the dynamic method depends upon the 
square  of  experimentally measured frequencies which are not known wi th   g rea t  
accuracy. 

Sunnnary and Results. The basic   s teps   in   the  experimental   procedure are 
as follows:  First,  choose  an  attachment and mount i t  on  the model. Raise 
the a i r  pressure  slowly  from  zero and note   the cri t ical  pressure a t  which the 
system starts exh ib i t i ng   ampl i f i ed   o sc i l l a t ions   ( f lu t t e r )   o r  shows a static 
loss   o f   s tab i l i ty   (buckl ing) .  The supporting  equipment is  then  used  to  f ind 
cy and t o   f i n d  the force P corresponding  to  the cri t ical  pressure p. The 
spr ing  constants  are then  determined  experimental ly   for   use  in   the  theoret ical  
analysis.  

When choosing  attachments, i t  is  des i rab le   tha t   they  a l l  be of about  the 
same weight and t h a t  a wide range of cy be  covered more o r  less uniformly. A 
wide va r i e ty  of screens and sandpapers were weighed  and combinations were 
chosen  that  met these  requirements. The values of cy which were experimentally 
real ized l i e  in   the   range  0.238 t o  0.913, the la t ter  being  for  an  attachment 
consis t ing of a smooth f l a t   p l a t e .  

In   F igs .  8.12 and 8.13, the  experimental   resul ts  are shown together  with 
the  theoretical   curves.  As was mentioned, two systems had to  be  considered 
because  of a mechanical   fa i lure  of the  joints.   For  each  experimental   run  a 
point  of i n s t a b i l i t y  is  drawn  on the  diagram a t  the  corresponding cy and P. 
A 0 i s  used f o r  a f l u t t e r   p o i n t ,  w h i l e  @ is used to  denote  divergence. 
The measurements are   labeled 1 through 8 f o r  system I and 1 through 12 f o r  
system 11. 

Table 3 summarizes the  experimental and t h e o r e t i c a l   r e s u l t s  and provides 
a comparison  between  these  results. 

8.2.5  Discussion of Re~sults.  Conclusions and Recommendations 

The results of th i s   s tudy  are summarized i n   F i g s .  8.12 and 8.13 and i n  
Table 3. It is noted  that  the  experimentally  determined cri t ical  points  l ie  
somewhat below the   t heo re t i ca l   s t ab i l i t y   cu rves   fo r  undamped f l u t t e r  and d i -  
vergence. In   t he   d i scuss ion  which  fol lows,   the   possible   reasons  for   this  
discrepancy are explored. 

One of the  primary  reasons  for  the  discrepancy between the   theore t ica l  
s t a b i l i t y   c u r v e   f o r  undamped f l u t t e r  and the  experimentally  observed  points 
o f   f l u t t e r   appea r s   t o  l i e  i n   t h e   f a c t   t h a t  damping is  present   in   the   phys ica l  
system. The damping mechanism assmned in   t he   ana lys i s   has   a l r eady  been d i s -  
cussed .   S tab i l i ty   curves   for   f lu t te r   wi th  small damping taken  into  account 
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are shown i n   F i g s .  8.12 and 8.13 f o r  several values  of the damping r a t i o  e. 
It is  seen from t h e s e   f i g u r e s   t h a t   i n   t h e   p r e s e n c e   o f  damping the   t heo re t i ca l  
s t a b i l i t y   c u r v e s  come to  pass   very  near   the  experimental   points .  No attempt 
was made to  determine 6 with a high  degree of accuracy  s ince  the assumed 
damping mechanism, while  reasonable, was chosen  mostly  for i t s  s impl i c i ty  
a d  it  is  doubt fu l   tha t  i t  represents  completely  the  actual damping i n   t h e  
system.  Supplementary  experiments  indicated  that  the assumed values  of G are 
realistic. 

The resu l t s   p resented   ind ica te   tha t  damping has a des t ab i l i z ing   e f f ec t   on  
the  system and tha t   the   p resence  of damping ex tends   the   f lu t te r   reg ion   to  
higher  values of a. Also,  the  lower  values  of  the damping r a t i o  are associ-  
ated  with lower values of f l u t t e r   l o a d s  and a wider   f lut ter   range.   This  con- 
f irms r e s u l t s  shown previously  in   Chapter  I V .  

The theore t ica l   curves  bounding the  regions  of   f lut ter   (with and without 
damping) and divergence were found t o  be   r a the r   i n sens i t i ve   t o  small changes 
i n  system  parameters, as indicated  in  Table  2,   with  the  possible  exception of 
the  spring  constants.  The dynamic  measurement  of the  spring  constants  pro- 
vides   another   possible   source  for   the  discrepancy  s ince  the  calculat ion  de-  
pends on the  square of a measured quantity;  i.e., the  frequency of f r e e   o s c i l -  
l a t i ons .  But, the  spring  constants were determined  a lso  using  the  s ta t ic  
method previously  descr ibed.   Diff icul t ies  may arise here, however, i n  measur- 
ing  the  appl ied  force by means of hanging  weights on a l i g h t   s t r i n g  which 
passes  over  an a i r  bearing. 

Since  the two methods of  measuring  the  spring  constants  gave somewhat 
different   resul ts ,   Table   2 ,  i t  was dec ided   to   inves t iga te   the   e f fec t   o f  a 5 
pe rcen t   d i f f e rence   i n   e i t he r  K1, K2, o r  IC3. A computer  program was w r i t t e n  

i n  which  each  calculated  spring  constant was subjec ted   to  a k 5 percent un- 
cer ta inty.   I f   an  envelope is drawn about  the  nine  curves  thus  obtained,  the 
e f f e c t  is roughly  to  give a m a x i m u m  e r r o r  of f 6 gm (or 2 4 - 10  percent). 
No other  system  parameter,  Table  2, i s  subject   to   an  error   approaching 5 per- 
cent,  except  possibly  the moments of iner t ia ,   bu t   these  are ins ign i f i can t  when 
compared to  the  mass-times-distance-squared terms t o  which they are added. 

The observed  discrepancy  between  the  theoretical  curve  for  divergence and 
the  experimental  points may be due   a l so ,   in   par t ,   to   the   uncer ta in ty   in   the  
values of the  spring  constants,   but  the  major  cause of e r r o r  seems t o  l i e  i n  
t h e   p o s s i b i l i t y  of i n i t i a l   imper fec t ions  and nonl inear   effects .  

Since  the  physical model i s  not   an   idea l   l inear   sys tem  f ree   o f  imper- 
fec t ions ,   there  is  no single,   sharply  defined  divergence  load. An a r b i t r a r y  
c r i t e r i o n  of the  load  required  for a one-inch  def lect ion of the  middle   joint  
was used as the  condition  for  divergence. By t h i s   d e f i n i t i o n ,   t h e  experimen- 
t a l  points  of  divergence were somevhat  below  (15-25 percent)  the  divergence 
curves  obtained  from  the  linear  analysis,  Figs.  8.12, 8.13, and Table 3. In 
an  attempt  to  explain  this  discrepancy i t  seems advisable   to   inves t iga te   the  
nonlinear  divergence  theory as well as the   e f f ec t s   o f   i n i t i a l   imper fec t ions .  
This i s  d i scussed   i n   de t a i l   i n   t he   nex t   s ec t ion   fo r  cy = 0.717 (run 11). 
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The r e s u l t s  of t h i s   i n v e s t i g a t i o n   a r e  shown i n  Fig. 8.14, with a de ta i l ed  
desc r ip t ion  of the  curves   given  in   Sect .  8.2.6. It is  noted  that   the  postu- 
l a t ed   c r i t e r ion   fo r   d ive rgence   g ives   ve ry   nea r ly   t he  same load  for   both  the 
l inear   (curve A) and the  nonlinear  (curve B) cases, and thus   the   theore t ica l  
divergence  curves  given i n   F i g s .  8.12 and 8.13 ac tua l ly   represent   the   d iver -  
gence  loads  for  the  nonlinear  theory  in  conjunction  with  the  adopted  cri terion. 

The s t rong  effect of  imperfections on the  divergence  load is  d i scussed   i n  
Sect. 8.2.6. I n i t i a l   i m p e r f e c t i o n s  i n  t he  amount cplo = 0.01, cpz0 = - 0.01, as 
shown i n  curve D, are indeed  reasonable   for   this  model. This  corresponds  to 
a no-load de f l ec t ion  of  about  0.1  inch a t   the   middle   jo in t .   This  small imper- 
fect ion  lowers   the  theoret ical   d ivergence  load by about  15  percent. 

Curve F is the  experimental   force-def lect ion  curve  for   run f l .  Note t h a t  
the  shape  of   the  curve  differs  somewhat from the   t heo re t i ca l  curves shown. It 
should  be  pointed  out  that  the  points  used  to draw t h i s   c u r v e  are r a t h e r   d i f -  
f i cu l t   t o   ob ta in   s ince   ho ld ing   t he  air pressure   cons tan t   to   ob ta in  a de f l ec t ion  
reading  does  not  prevent  the  motion of the  model. Since  the  run of the  curve 
F i s  somewhat d i f f e r e n t  from the  other   curves ,   the   l ikel ihood  exis ts   that  
other   sources   for   the  discrepancy may be present.  It may be  appropriate   to  
mention  here  that i t  has  been  noted  repeatedly i n   t h e   p a s t   t h a t   s t r u c t u r a l  
systems  buckle a t  loads below those  theoretically  expected. 

To provide  better  insight  into  the  discrepancy  under  discussion,  the ex- 
perimental  procedure was a lso   sc ru t in ized .  The method of cor re la t ing   the  air  
pressure  as  read on t h e   d i a l  gage, t o   t he   ac tua l   fo rce  on the  attachment, was 
studied  with  the  conclusion  that  no appreciable  error  could be introduced. 

8.2.6 Nonlinear  Divergence  Analysis 

The equations of motion,  assuming v1 and cp2 are   not  small, neglecting 

iner t ia l   e f fec ts ,   thereby   res t r ic t ing   the   equat ions   to   use   for   d ivergence  ana- 
l y s i s ,  and allowing  for  imperfections by assuming that   the   equi l ibr ium  confi-  
gurat ion is not a s t r a i g h t   l i n e ,  are 

(8 .20)  

+ %d2(i1 s i n  q1 + d2 s i n  p2) cos G2 0 
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where = cp1 - '910' cp2 'I= cp2 - % o s  and 'p10 
- and cp are the  no-load  values 20 

of 'pl a d  ( ~ 2 ~  respectively.  

Restricting  the  magnitude  of 'pl and % by s e t t i n g  

(8.21) 

the  equations may be w r i t t e n  as polynomials  of  the form 

(8.22) 

A computer  program was wr i t t en   t o   so lve   t hese  two third-degree  algebraic 
equations  simultaneously  for  various  values of P, cp and '~2~. The r e s u l t s  

are g iven   in   F ig .  8.14 f o r  cy = 0.717  (run  11) in   the  form P versus 'pl. The 

v a r i a t i o n  of cp with P i s  e s s e n t i a l l y  similar. The ve r t i ca l   do t t ed   l i ne  re- 

presents  the  angle q1 corresponding  to  one-inch  deflection of the  middle 

j o i n t ,  which is  the   buckl ing   c r i te r ion  used i n   t h i s   s t u d y .  

10' 

2 

Curve A represents   the   l inear  case f o r  qo = cp20 = 0. No def l ec t ion  

occurs  unti l   the  buckling  load is  reached. Curve I) represents  the  imperfection- 
f ree   nonl inear  case where the  approximations (8.21) are used. The buckling 
loads  predicted by curves A and B are ra ther   c lose .  

Curves C, D, and E are drawn for   the   va lues  of cp and cp20 indicated.  

Note that  the  buckling  loads,  as determined by the   i n t e r sec t ion  of the re- 
sponse  curves  with the d o t t e d   v e r t i c a l   l i n e s  depend s igni f icant ly   on   the  mag- 
nitude of 'plo and eo. 

10 

Curve F i s  the  experimental  response  curve  for  the model with  the  a t tach-  
ment used for   run  11 (a = 0.717) in   p l ace .  
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8.3 Demonstrational Models 

Considerable   insight   into  the  possible   types of  dynamic behavior of 
mechanical  systems  subjected  to  nonconservative  forces may be gained  not 
only  through  quantitative  experiments,  but  also by qua l i ta t ive   observa t ions  
of  demonstrational models. A set of such  models  has  been  recently  designed 
and constructed a t  t he   S t ruc tu ra l  Mechanics  Laboratory of Northwestern Uni- 
versity  [ l05],  and i t  is intended  to   develop  this  set f u r t h e r  a t  the  Applied 
Mechanics Laboratory  of  Stanford  University. A br ie f   descr ip t ion  of the 
models follows. 

Model A 

The model cons i s t s  of two l i k e   r i g i d  pipe-segments  (Fig. 8.15a). The 
f i r s t  is e l a s t i c a l l y  hinged t o  a f ixed  base,   whi le   the  other  is e l a s t i c a l l y  
hinged t o   t h e   f i r s t  and carries a nozzle a t  t h e   f r e e  end. 1 n . a d d i t i o n   t o  
the elastic h inges ,   the   s t i f fness  of the  system  can  be  varied by means of 
lateral, sp i ra l   spr ings .  The system is  constrained  to  move i n  a horizontal  
plane,  being  suspended by long ,   l igh t   s t r ings .  A f luid  can  be conveyed through 
the  pipes,   entering a t  the  f ixed end  and leaving  through  the  nozzle.  In  the 
absence of t he   f l u id ,  or f o r  small rate of  discharge,  the  pipes are a t  rest 
and col inear ,   def ining  the  equi l ibr ium  configurat ion.  Two symmetrically  pla- 
ced s t r ings   in   the   hor izonta l   p lane   a re   a t tached   to   the   f ree  end of  the  pipe 
and pulled toward the  f ixed  base a t  a smal l   angle   re la t ive   to   the   p ipe  axis. 

It is  observed  that as the  f low  ra te  i s  increased, and passes a c e r t a i n  
(cr i t ical)   value,   the   pipe  system does not  remain in   the  undis turbed  confi-  
guration. The l o s s  of s t a b i l i t y   o c c u r s   e i t h e r  by divergence  or by f l u t t e r ,  
depending upon t h e   s t i f f n e s s  of the   auxi l ia ry   co i l   spr ings  a t  t he   f r ee  end 
and the   t ens ion   i n   t he  wires. If the   co i l   spr ing  a t  t h e   f r e e  end is s u f f i c i -  
e n t l y   s o f t ,   o r  i s  removed, and the   t ens ion   in   the  wires small, then  the  loss  
of s t ab i l i t y   occu r s  by f l u t t e r - t y p e  motion. By c o n t r a s t ,   f o r   s u f f i c i e n t l y  
s t i f f   c o i l   s p r i n g s ,   o r   f o r   l a r g e  enough t ens ion   i n   t he  wires, the  system  loses 
s t a b i l i t y  by divergence  (Fig.  8.15b). 

I n  experimenting  with  this  system, i t  was found that  the  system  can ad- 
m i t  two d i s t i n c t  cr i t ical  f l u t t e r  flow rates. One is associated  with rela- 
t i v e l y   l a r g e   i n i t i a l   d i s t u r b a n c e s  and the  other   corresponds  to  small i n i t i a l  
perturbations.  That is, f o r  a cer ta in   range  of flow rates, the  system is 
asymptotically  stable  vhen  disturbed by s u f f i c i e n t l y  small i n i t i a l   i n p u t  of 
energy,  while i t  oscil lates  with  increasing  amplitude  about  the undeformed 
axis f o r   s u f f i c i e n t l y   l a r g e   i n i t i a l   p e r t u r b a t i o n s   ( l o s s  of s t a b i l i t y   i n   t h e  
large).  Above this  range  the  system loses s t a b i l i t y  by f l u t t e r   f o r  any i n i -  
t i a l  dis turbances  ( loss  of s t a b i l i t y   i n   t h e  small). 

A thorough and sys temat ic   inves t iga t ion   (bo th   ana ly t ica l  and experimental) 
of ar t iculated  pipes   conveying  f luid was presented by Benjamin  [80,93]. The 
model described  here  represents a general izat ion of  Benjamin's  system by in- 
cluding a nozz le   to   cont ro l   Cor io l i s   forces ,  lateral  spr ings   to   cont ro l   e f -  
f ec t ive   cons t r a in t s ,  a d  tension wires to   con t ro l   t he   d i r ec t ion  of the  resul-  
t an t   fo rces   ac t ing  at t h e   f r e e  end. It appears   that   the   exis tence  of   loss  of 
s t a b i l i t y   i n   t h e   l a r g e  was not  observed  before i n  such  systems. 
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Model 1 

T h i s  model c o n s i s t s   e s s e n t i a l l y   o f  a piece of a rubber  tube,  fixed a t  
one  end  and e l a s t i c a l l y   r e s t r a i n e d   i n   t h e  axial d i r e c t i o n  a t  the   o ther  end, 
a t  which r o t a t i o n  i s  prevented,  Fig. 8.16. The tube is  confined  to move i n  
the  horizontal   plane,   being suspended by means of  long, l i g h t   s t r i n g s .  A 
f luid  can  be conveyed through  the  tube,  entering a t  the   f ixed  end.  The other  
end being  closed,  the  f luid is  ejected  through two nozzles,  placed a t  a cer- 
t a in   d i s t ance  from the  f ixed end symmetr ica l ly   wi th   respec t   to   the   tube   in  
t h e   d i r e c t i o n   p a r a l l e l   t o   t h e   t a n g e n t   t o   t h e   t u b e  a t  tha t   sec t ion .  The 
nozzles are mounted i n  a f i x t u r e  which is made t o   s l i d e  on  an air  cushion. 
The sleeve  providing  the  sl iding  support  a t  t he   e l a s t i ca l ly   cons t r a ined  end 
i s  also  supported by an air bearing. I n  Fig. 8.16 the  tubes  supplying a i r  
for   the  bear ings are seen  on  the  left   part   of  the  photograph. 

It i s  observed that the  s t ra ight   equi l ibr ium  configurat ion may be l o s t  
i f   the   f low rate of t he  a i r  passing  through  the  tube  exceeds a c e r t a i n  cri-  
t i ca l  value. Loss of   s tab i l i ty   can   occur  by e i t h e r   f l u t t e r  or divergence, 
depending upon the   d i s tance  between the  nozzles and the  f ixed end. It may 
be  remarked tha t  by at taching a series of pairs  of  nozzles  along  the  tube,  
the problem  of a bar   subjec ted   to   d i s turbed   tangent ia l   fo l lower   forces  may 
be  realized. 

Model C 

This model cons i s t s  of a cant i levered  thin elastic s t r i p  a t  whose f r e e  
end a c i r c u l a r   r i g i d   p l a t e  i s  a t t ached   i n  a plane normal to   t he  axis, Fig. 
8.17. The surface of the   p la te   can  be var ied by placing  screens of d i f f e r -  
en t  mesh sizes. A nozzle whose axis i s  p a r a l l e l   t o   t h e  axis of t h e   s t r i p  
can be made to   d i scharge   f lu id  a t  a constant rate which  impinges upon the 
plate .  

It is  observed  that as a c e r t a i n  cr i t ical  flow rate i s  exceeded, the 
can t i l eve r  may l o s e   s t a b i l i t y  by e i ther   f lu t te r   o r   d ivergence ,   depending  
upon the mesh s i z e  of the  screen  a t tached  to   the  plate .  Both to r s iona l  and 
bending  deformation are observed to   occur   for   both  types of l o s s  of s t a b i -  
l i ty ,   wi th   tors ional   deformations becoming more pronounced with  increased 
eccen t r i c i ty .  

Model D 

This model cons i s t s  of a cant i levered   th in  elastic s t r i p  a t  whose two 
longi tudinal   edges  f lexible   tubes are attached  through  one  of  which  fluid 
a t  constant rate can be  conveyed, enter ing a t  the  f ixed end and leaving 
through  the  open end, Fig. 8.18a. The other  tube  does  not convey  any f l u i d  
and is provided  solely  to  decrease  the asymmetry  of the  cross-section. 

It i s  observed  that as the  flow rate exceeds a c e r t a i n   c r i t i c a l   v a l u e ,  
t h e   c a n t i l e v e r   l o s e s   s t a b i l i t y  by bending-tors ional   f lut ter ,   Fig.  8.18b. It 
i s  also  observed  that  a cer ta in   range  of  flow rates r e s to re s   t he   o r ig ina l  
undeformed equilibrium  configuration which may have  been l o s t  by l a t e r a l  
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buckling  caused by at taching a given  weight a t  t h e   f r e e  end. Fig. 8.18~ shows 
the  buckled  configuration a t  zero  flow rate and Fig. 8.18d shows the   res tored  
or iginal   equi l ibr ium  posi t ion,   achieved w i t h  a cer ta in   f low rate. As the  f low 
rate i s  increased  fur ther  beyond a c e r t a i n   v a l u e ,   s t a b i l i t y  is l o s t  by f l u t t e r .  

Model E 

This model consis ts ,  as in   t he   p rev ious  two cases, of a cantilevered 
elastic s t r i p  a t  whose two longi tudinal   edges  f lexible   tubes are attached. 
A r ig id   p ipe  is  placed  along  the  transverse  free  edge a d  connected  to  the 
longitudinal  tubes,   Fig.  8.19. Fluid is  conveyed a t  a constant rate through 
the  longitudinal  tubes,   entering a t  the  f ixed end  of the  cant i lever ,  and i s  
discharged  through  an end opening i n   t h e   r i g i d   p i p e ,  whose o the r  end is closed. 

It  i s  observed  that as the  f low rate is  increased beyond a-cer ta in  cri- 
t ical  v a l u e ,   s t a b i l i t y  i s  l o s t  by bending-tors ional   f lut ter .  The system may 
be considered as model of a n   a i r c r a f t  wing with a Jet   engine a t  the   f r ee  end. 

Model F 

This model cons i s t s  of a r igid  c losed  cyl inder  which can   ro l l   on  a hori-  
zontal   p lane.  A piece of a r ig id   p ipe  is  a t tached   to   the   cy l inder  by  means 
of an elastic hinge,  which carries a nozzle a t  the   f r ee  end, Fig. 8.20a. 
Fluid  can be conveyed in to   the   cy l inder  by means of a f lex ib le   tube ,  which 
then  enters   the  pipe and is discharged  through  the  nozzle. 

It is observed  that as t h e   r a t e  of discharge i s  increased beyond a cer- 
tain  value,   the  system  acquires a (stable)  equilibrium  posit ion  such  that   the 
pipe is v e r t i c a l  and i t s  axis passes  through  the  center  of  the  cylinder,  Fig. 
8.20b. As t he  rate of discharge i s  increased  fur ther ,   another   def ini te  
(cri t ical)  value i s  reached, beyond which the  system  begins  to  execute  oscil-  
lat ions  with  increasing  amplitudes  about  the  preceding  equilibrium state 
( f l u t t e r )  . 

Mode1 G 

This model cons i s t s  of a r ig id   cy l inder ,  as in   the   p rev ious  model, which 
can  rol l   on a convex r i g i d   c y l i n d r i c a l  segment  which i n   t u r n  i s  f i x e d   i n  a 
concave r i g i d   c y l i n d r i c a l  segment, t h i s   l a t t e r   b e i n g   f r e e   t o   r o l l   o n  a hori-  
zontal   plane,   Fig.  8.21a. The r ig id   cy l inder  is  closed a t  the end planes and 
i s  provided  with  an  opening and a nozzle  on  the lateral surface,   the  axis of 
the  nozzle  passing  through  the  center  of  the  cylinder.  Fluid  can be conveyed 
through a f lex ib le   tube   to   the   cy l inder  and i s  discharged  through  the  nozzle. 

It is  observed  that as the rate of discharge is increased beyond a c e r t a i n  
value, the system  acquires a (stable)  equilibrium  configuration  such  that   the 
a x i s  of the  nozzle is  ve r t i ca l ,   F ig .  8.21b. As the  rate of discharge i s  in -  
c reased   fur ther ,   another   def in i te   (c r i t i ca l )   va lue  is  reached, beyond which 
the  system  begins  to  oscil late  with  increasing  amplitudes  about  the  preceding 
equilibrium state ( f l u t t e r ) ,   F i g .   8 . 2 1 ~ .   I f   t h e  convex cylinder segment on 
which the   cy l inder   ro l l s  i s  replaced by a f l a t   p l a t e ,   F i g .  8.21d, no f l u t t e r  
is observed. 
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Model H 

This model cons i s t s  of a r ig id   p ipe  segment  suspended by means of a 
f lex ib le   tube  and  hanging in t h e   v e r t i c a l   p o s i t i o n ,  Fig. 8.22. The lower 
end of   the   r ig id   p ipe  carries an  a t tachment ,   the   essent ia l   par t   of   which 
consis ts   of  two nozzles  placed i n  a plane normal t o   t h e  axis of   the  pipe 
segment, pa ra l l e l   t o   each   o the r .  The f l ex ib l e   t ube  is  connected t o  a f ixed 
base.  Fluid  can  be conveyed through  the  f lexible   tube,   enter ing  the  r igid 
pipe segment  and discharging  through  the  nozzles   in   opposi te   direct ions.  

It is observed  that   for any constant  f low rate above a c e r t a i n  minimum 
value,   the   r igid  pipe  begins   to  move l i k e  a spher ica l  pendulum with monotoni- 
cally  increasing  amplitude,  which w i l l  approach a l imi t ing   va lue   for  a suf -  
f ic ien t ly   smal l   f low rate. The  minimum value  of  the  constant  flow rate which 
produces  the  onset  of  the  pipe  motion is not  sharply  defined. It is fu r the r  
observed  that  the same motion is i n i t i a t e d   i f   t h e   r i g i d   p i p e  segment is  made 
very   shor t  as compared to   t he   f l ex ib l e   t ube ,  and vice  versa .  

The problem  of a cantilevered  bar  subjected a t  t h e   f r e e  end t o  a twist- 
ing moment which ro t a t e s   w i th   t he  end cross-sect ion of the  bar was f i r s t  
considered by Nikolai  [2]. He found t h a t   t h e  undeformed r ec t i l i nea r   equ i -  
l ibr ium  configurat ion is uns t ab le   fo r  any  nonvanishing  magnitude  of  the 
twist ing moment. 
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TABLE 1 

COMPARISON  BETWEEN THE EXACT  SOLUTION AND THE  TWO-TERM 
GALERKIN APPROXIMATION: SMALL VELOCITY-DEPENDENT  FORCES 

1.0 1 0.0 I 2.035 
0.0 0.0 1.780 

0.0 1.0 1.107 

~~ 

0.0 I 1.0 I 1.462 

0.0 I 1.0 I 1.73 

0.0 1.0  1.92 

1.0 1 1.0 
1.155 

1.0 I 1.0 1.483 
~ " ~ ~~ 

1.0 I 1.0 I 1.735 

1.0 I 1.0 I 1.925 

10.0 1.0 1.426 
- " ~- " ~~ ~ 

10.0 I 1.0  1.618 
- ~~~ ~ 

~~ 

10.0 I 1.0 I ~ 1.795 

10.0 I 1.0 I 1.935 

100.0 I 1.0 I 1.895 

1.926 

100.0  1.960 

100.0 1.0  1.996 

Galerkin 
Met hod 

2.035 

1.768 

1.082 

1.447 I 
1.729 

1.924 

1.133 

1.469 

1.738 I 
1.926 

1.611 

1.794 

1.940 

1.902 

1.964 

2.000 I 

15 1 



TABLE 2 

SYSTEM DATA 

Dimensions 
( 4  

al = 0.692 

bl = 16.3 

c1 = 31.9 

a2 = 0.692 

b2 = 16.3 

c = 32.3 

d2 = 25.3 

2 

a, = 32.4 

i2 = 32.6 

Spring  constants 

System I K1 

K2 

5 
System I1 K1 

K2 

K3 

Part 

10.20 

22 .o 

42.1 

10.20 

22.0 

3.2 

43.5 

Centroidal 
moment of 
inertia 

2 (Em- cm ) 

- 0  

1655 

1655 

- 0  

771 

Dynamic  method  Static  method 

5.70 x 10 dyne-cm 6 

9.12 X 10 dyne-cm 5 

3.50 X 10 dynefcm 2 

... 

... 

... 
5.34 X 10  dyne.  cm 6 5.45 x 10 gm-cm 

9.02 X 10 5 dyne-cm 9.41 x 10 gm-cm 

3.35 X 10 dynefcm 2 3.53 X 10  gm/cm 

6 

6 

2 
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TABLE 3 

SUMMARY OF NUHERICAL RESULTS 

SYSTEH I SYSTEM I1 

“ 

Run 
i a  
” 

1 0.343 

2 0.327 

3 0.560 

4 0.368 

5 0.548 

6 0.913 

7 0.533 

8 0.346 

9 0.454 

10  0.320 

11  0.717 

12  0.238 

Experi- 
mental Theoretical error x 

- 

56.4 72 

55.2 70 

94.9 .. 
57.2  73 

99.9 .. 
95.9 .. 
97.9 .. 
58.8 77 

55 ... 
55 ... 
. . 124 

55 ... 
. . 125 

.. 117 

. . 125 

55 ... 

+ 2.5 
+ 0.3 
-23.4 

+ 3.8 
-20.1 

-18.0 

-21.7 

+ 6.9 

Experi- 
mental 

* ’crit 
- < g m > ~ ~ ~  

~~ 

Theoretical 

1 2 3  

- 

F 70.2 89 62 ... 
F 69.7 88 62 ... 
B 118.3 .. .. 140 

F 75.7 90 63 ... 
B 116.0 .. .. 140 

B 111.9 .. .. 130 

B 110.2 .. .. 140 

F 69.8 89 62 ... 
F 77.0 .. 66 ... 
F 70.2 87 62 ... 
1 105.0 . . . . 135 

F 69.7 83 62 ... 

x 
error 

+12.9 

+11.1 

-15.1 

+19.2 

-17.0 

-13.8 

-21.3 

+11.4 

+16.7 

+12.9 

-14.8 

+12.4 

* 
Observed  loss  of  stability: 

1 Undamped  flutter. 

2 Damped  flutter, E = 5.0. 

3 Buckling. 

F = flutter, B = buckling. 

153 





Fig. 1.1 Column under compressive eccentric load 
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1 Punstable equilibrium 

-4 ' 
,stable equi libr' 
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Fig.  1.2  Equilibrium curves of a centrally loaded column 
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Fig. 3.1 Two-degree-of-freedom model 
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-3 - 2  - I  - 3  -2 -I 
> 

Fig. 3.2 Load verlu8 frequency curve8 for  particular valu.8 
of par-eter ct i n  the range 0 5 a 5 1 



UNSTABLE 

STABLE 

UNSTABLE 

STABLE -+ 
a= 0.5 

Fig. 3.3 Detail of load versus frequency  curve  for cy = 0.5,  
illustrating multiple ranges o f  stability and 
instability 
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Fig. 3.4 Critical  loulr  vcr~ur paramtar a 
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I 
I 

unrtable I 
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c = crll~22- a cy < 0 12 21 

( b) 

Fig. 3 .5  Region6 of s tabi l i ty  for cy12~21 > 0 

s tabi l i ty  

------ instability  (only  divergence 
possible) 



c = "11u22 < 0 

stability 

------ instability (only divergence 
posrible) 

Fig. 3.6 Regions of stability for ul2aZ1 = 0 



Plain  area:  f lutter may occur 

Shaded area: no f lut ter   poss ib le  

\ b - 0  

g2- I 0 g;=o 

Note: straight l ines  8;- 0 have 

slops v; v a d  p .re defined 

Fig. 3.7 Existence  of  f lutter 
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- f l u t t e r  u y  occur 

””” no f l u t t e r  porsible 

Fig. 3.8 Existence of f l u t t e r  for A - 0 
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c - 0  

Ct2= 0 Ct1= 0 Plain  area:  Divergence may occur 
Shaded area: No divergence  possible 

Fig.  3.9 Existence of divergence 
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XI 

Fig. 3.11 Stability and instability areas 
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Fig. 3.12 Details of loss of stability 
i n  areas I through XI1 (Cont'd.) 
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I1 

I1 

II 
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11 
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II 
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I1 

Area X I  
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P-0 

I D  

Area XI1 

' P - 0  

- Stab i l i ty  
""" ins tab i l i ty  

D indicates   that   stabi l i ty  i s  l o s t  
by divergence 

by f lut ter  
F indicates   that   stabi l i ty  is  lost 
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11 I V D  and IV/I 
I1 V/II 
tI VI/III,  VII/X, and Point T 
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Fig.  3.12 Details of loss of s t a b i l i t y  
in   areas  I through XI1 (Concluded) 
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F,lutter for P < 0 
8bd P > o  

/ ....... ....... ...... ...... ....... ..... ::::/ ....... .... .... .... 

? U  & 
4 0  0 
a w  w 

V Fig .  3. 13 Loss of s t a b i l i t y  by 

{ i f  load P divergence 

9 1 

i o  increared  (decreased) 
from zero value 
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Region I Region I1 Region 111 Region I V  Point Q 

?ig. 3.14 Loas of a t a b i l i t y  in regions I through I V  
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Fig. 4.1 Tvo-degree-of-freedom model 
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Fig. 4.2 Orthographic projections and pcrrpcctivc of root curve8 
of charactaristlc  equation  with no d v i n g  
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Fig. 4.3  Orthographic  projectionr ami perrpectivr of root curve8 
of characterirtic  equation with damping 
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Fig. 4.5 Significance of c r i t i c a l  load F a8 B increases d 2 
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Fig. 4.6 Critical  load for various degree8 of Instability ver8~1 
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Fig. 4.8 Two-degree-of-freedom model 
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Fig. 4.9 General nature of roots of characteristic equation 
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Fig. 4.10 Types of divergent motion 
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Fig.  4.12 Critical  loads  and  instability  mechanism8  for B = 1 



Fig.  4.13  Critical load8 and inrtabi l i ty  mechanirms for p = 11.071 
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Fig.  4.15 Critical load versus ratio of damping coefficients for a - 0.6 



Fig. 4.16 Appropriate  valuas of 8 veraur  valuer of CT for complete  elimination 
of dertabiliring effect 



Fig. 4.17 Characteristic roots in the 
colp lex plane 
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Fig. 4.18 Critical loads with  and 
without d a q i n g  
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Fig. 4.19 Geometry of cantilevered  pipe 
conveying fluid 
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Fig. 4.20 Typical  plot of frequency  equation 
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Fig.   4 .21  Crit ical   f lutter parameter vs .  the  ratio 
of  Coriolis  force  to  internal damping force: 
zero  external damping 
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as  indicated 
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Fig. 4.23 Comparison  between  the  exact  solution and the  two-tern 
Galerkin approximation: zero external and internal 
damping 
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Pip. 4.24 Syoter with two degree. of freedom 
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Fig.  4.25 System with  distributed external damping 
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Fis. 4.26 Types of oscillatory 
behavior 
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Fig. 4.27 Translation of imaginary axis 
in root plane 
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Fig. 4,28 Critical  force 8s 8 function of u for various values  of B2. 
Thick line joins values of  transition  force Fte 
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Fig.  6.1  Stability  region  in  the parameter plane for Example 2 
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Fig. 6.2 A cantilever  under a follower  force 
(the  Beck  problem) 
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Plate 

Fig. 6.3 A cantilever under a force  directed along the 
undeformed axis (the Reut problem) 
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Fig. 6.4 A cantilever under both a follower  force 
and a force  directed  along  the undeformed 
axis (a conservative system) 
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Fig. 7.2 Type8 of instability as a function of 8yatcm  geometry 
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Pig. 8.1  Reut's problem 
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Fig .  8.2 Photograph of the model 
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Fig. 8.3 Sequence of photographs  depicting  flutter 
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Fig. 8.4 Buckled state:  Divergence 
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Pig. 8.5 Schematic of the model 
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Fig .  8.6 Photograph of the calibrating system 
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Fig. 8 . 7  Attachment munted  on  calibrating 
system (top view) 
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F i g .  8.8 Configuration to find R1 by dynamic method 

216 



Linear  Spring 

Detached 
K 3 d 2  

I 
I 
- End Joint Locked 

I 

to find K 2  

Fig. 8.9 Configuration  to f i n d  K2 and K,, by dynamic 
method 
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Fig. 8.10 Configuration t o  find K by static method 1 
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Fig. 8.11 Configuration  to f ind K2 and K3 by s t a t i c  
method 
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Fig. 8.13 Stability diagram - Syrtem XI 
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Fig. 8.15 Demonstration node1 A 
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F i g .  8.16 Demonstration- Model B 
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Fig. 8.17 Demonstration Model C 
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Fig. 8.18 Demonstration Model D 
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Fig. 8.18 Demonstration W e 1  D 
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F ig .  8.18 Demonstration Model D 
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Fig. 8.20 Demonstration Model F 
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Pig. 8.21 Demonstration Model G 
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Fig. 8.21 Demonstration Model G 
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Fig. 8.21 Demonstration Model G 
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Fig. 8.22 Demonstration Hodel R 


